Episode 23: Exponential growth and decay
Biology. (population size)
Demography (population size)
Nuclear physics (radioactive decay)
Chemistry (rate of reactions)
Finance (interest rates)
Exponential model: A quantity increases/decreases at a rate proportional to its size.
Let $y(t)$ be the quantity of y at time t.
DE for the model:

$$
\frac{d y}{d t}={\underset{\text { Nr eff. }}{k y} \quad}^{k>0} \begin{aligned}
& k>0 \\
& k<0
\end{aligned}
$$

IVA $\left\{\begin{array}{l}\frac{d y}{d t}=k y \\ y(0)=y_{0}\end{array}\right.$
Sol.

$$
\begin{aligned}
& \frac{d y}{y}=k d t \\
& \ln |y|=k t+C_{1} \\
& |y|=e^{k t+C_{1}} \\
& y=C e^{k t}
\end{aligned}
$$

Sol.

$$
\begin{aligned}
& y_{0}=\underset{p}{y}(0)=C \underbrace{e^{k \cdot 0}}_{1} \Rightarrow c=y_{0} \\
& \text { se. of the NP is } \\
& y(t)=y_{0} e^{k t}
\end{aligned}
$$

Exp for is the wong fr which rate of growth is proportions to the of n itself!

Example. After Fukushima nuclear plant explosion (March 12, 2011), cesium-137 has been detected outside the plant. Its half-life is 30 years.
a) Find a formula for the mass left after t years.
b) How much cesium will be left after 100 years out of 200 g of initial amount?
c) When willthe mass of 200 g be reduced to 10 g ?

Sol.
Mode 1:
Let $m(t)$ le the mass
${ }^{137} \mathrm{C}_{5}$ at time t years after 3.12.2011

NP $\begin{cases}\frac{d m}{d t}=k m & (k<0) \\ m(0)=m_{0} & \text { (initial amokud) }\end{cases}$

$$
\frac{d m}{m}=k d t
$$

$$
h_{m}^{m}=k++c_{1}
$$

$$
m(t)=C e^{k t}
$$

$(*) \quad m(t)=m_{0} e^{k t} \quad k<0$
a) Half-lige of ${ }^{187} \mathrm{Cs}$ is 30 years means that

$$
m(30)=\frac{m_{0}}{2} \quad \text { plug into }(*)
$$

$$
t=30: \underbrace{m(30)}_{\frac{m_{0}}{2}}=m_{0} e^{k \cdot 30}
$$

$$
\frac{1}{2}=e^{30 k}
$$

$$
\begin{aligned}
& \frac{1}{2}=e \\
& k=\frac{\ln (1 / 2)}{30}=\frac{-\ln 2}{30} \approx-0.023 \quad(<0) \\
& -0.023 t
\end{aligned}
$$

b)

$$
\begin{aligned}
& t=100 \text { years } \\
& m_{0}=200 \mathrm{~g} \\
& m(100)=200 \cdot e^{-0.023 \cdot 100} \approx 20 \mathrm{~g}
\end{aligned}
$$

c)

$$
\begin{aligned}
& t=? \quad \text { s.t. } \quad m(t)=10 \mathrm{~g} \quad m_{0}=200 \mathrm{~g} \\
& \underbrace{m(t)}_{10}=200 e^{-0.023 t} \\
& \frac{1}{20}=e^{-0.023 t} \\
& t=\frac{\ln 1 / 20}{-0.023} \approx 130 \text { (years) }
\end{aligned}
$$

