Episode 22: Newton's law of cooling
The rate at which a hot body cools is proportional to the excess of its temperature above the temperature of its surrounding medium.

Let $y(t)$ be temp. at time t

$$
\frac{d y}{d t}=\underbrace{k}_{\text {cooling }}\left(y-y_{\text {sur }}\right)
$$

Problem. If a cup of coffee cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minutes in a $20^{\circ} \mathrm{C}$ room, how much longer will it take to cool to $40^{\circ} \mathrm{C}$?

Let $y(t)$ be the temp at time $t=$?
Given $\left\{\begin{array}{l}y(0)=80^{\circ} \mathrm{C} \\ y(5)=50^{\circ} \mathrm{C}\end{array} \quad\right.$ initial con.
extra card.

$$
\begin{aligned}
& \frac{d y}{d t}=k(y-20) \quad \text { (By Newton's low of coolidge) } \\
& \frac{d y}{y-20}=k d t \\
& \ln \mid y-201=k t+C 1 \\
& y-20=C e^{k t} \\
& y(t)=20+C e^{k t} \\
& y 0=y(0)=20+C e^{0} \Rightarrow C=60 \\
& t \\
& y(t)=20+60 e^{k t} \\
& 50=y(5)=20+60 e^{5 k} \Rightarrow \begin{array}{l}
1 \\
t
\end{array} \begin{array}{l}
30=50 e^{5 k} \\
\frac{1}{2}=e^{5 k}
\end{array} \\
& \ln \frac{1}{2}=5 k \\
& k=\frac{\ln 1 / 2}{5} \quad(\approx-0.14)
\end{aligned}
$$

$$
\frac{y(t)=20+60 e^{-\frac{k_{2}}{5} t}}{d \quad t \text { st. } y(t)=40}
$$

Find

$$
\begin{aligned}
& 40=20+60 e^{-\frac{h_{2}}{5} t} \\
& 20=60 e^{-\frac{h_{2}}{5} t} \\
& \frac{1}{3}=e^{-\frac{h_{2}}{3} t} \\
& \ln ^{\frac{1}{3}}=-\frac{h_{2}}{5} t \\
& t=5 \frac{h_{3}}{h_{2}} \approx 7.9
\end{aligned}
$$

$7.9-5=2.9 \approx 3$ min more to cool down from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

