Episode 16.
How much work was needed to erect the Great Pyramid of Giza?

Find the work against the gravity to consthet this pyramid
Given: hight: $\quad h=147 \mathrm{~m}$
base: $\quad a=230 \mathrm{~m}$
density of lime stone: $\rho=2.5 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Find: Work against the force of gravidy
From Physics:

$$
\underbrace{W}_{\text {work }}=\underbrace{F}_{\text {once }} \cdot \underbrace{S}_{\text {dis. }}
$$

$$
\uparrow \begin{aligned}
& F=m g \\
& m=\rho V
\end{aligned}
$$

Consider all stones at the same hight
hanijontal slab at light x work to eff thais slab to

$$
d W=?
$$

Vertical cross -sec. of the pyramid

From similar Δ_{s} :

$$
\frac{b}{a}=\frac{h-x}{h} \Rightarrow b=\frac{a}{h}(h-x)
$$

The volume of the slab is $d V=\underbrace{b^{2}}_{\text {aver thichurs }} \underset{h^{2}}{d x}=\frac{a^{2}}{h^{2}}(h-x)^{2} d x$
The mass of the slat os $d m=\rho d V=\frac{\rho a^{2}}{h^{2}}(h-x)^{2} d x$.
The weight of the slab is

$$
d F=d m \cdot g=\frac{\rho g a^{2}}{h^{2}}(h-x)^{2} d x
$$

The work against the gravid to lift the slab at hight x is

$$
d W=\underbrace{d F}_{\text {Weiogt }} \cdot \underbrace{x}_{\text {light }}=\frac{\rho g a^{2}}{h^{2}}(h-x)^{2} \cdot x d x
$$

Total work to $\begin{gathered}\text { erect } \\ x=h\end{gathered}$ the pyramid is

$$
\begin{aligned}
& W=\int d W=\int_{x=0}^{x=h} \frac{\rho g a^{2}}{h^{2}} \underbrace{(h-x)^{2} x} d x= \\
= & \frac{\rho g a^{2}}{h^{2}} \int_{0}^{h}\left(x^{3}-2 h x^{2}+h^{2} x\right) d x= \\
= & \frac{\rho g a^{2}}{h^{2}}\left(\frac{h^{4}}{4}-\frac{2 h^{4}}{3}+\frac{h^{4}}{2}\right)=\frac{\rho g a^{2} h^{2}}{12}= \\
= & 2.3 \cdot 10^{12}(J) \\
& 17=\text { watt see } \quad 2.3 \cdot 10^{12} \mathrm{~J}=6.4 \cdot 10^{5} \mathrm{kwh}
\end{aligned}
$$

