Episode 15: Mechanical work

$$
\text { work }=\text { force } \times \text { displacement }
$$

Assume that
an object moves a long a straight hive as the force is a $f$-n of the position of the object.

$\overleftrightarrow{d x}$
on small disp). $d x$,

$$
F(x)=\text { const ans }
$$

$$
\underbrace{d W}_{\text {work } \ell \text {-t }}=\underbrace{F(x)}_{\text {force }} \cdot \underbrace{d x}_{\text {disp). }}
$$

Total work :

$$
W=\int d W=\int_{x=a}^{x=b} F(x) d x
$$

Ex. Hooke's law


Problem. A force of 40 N is required to stretch a spring from its natural length of 10 cm to the length of 15 cm . How much work is needed to stretch a spring from 15 cm to 18 cm ?
Sol.


By Hooke's law

$$
F(x)=k \underbrace{x}_{\text {displ }}
$$

displacement $x=15 \mathrm{~cm}-10 \mathrm{~cm}=5 \mathrm{~cm}=0.05 \mathrm{~m}$ (SI)

$$
\underbrace{F(0.05)}_{40}=k \cdot 0.05 \Rightarrow k=\frac{40}{0.05}=\frac{4000}{5}=800
$$

So $F(x)=k x=800 x$
So 0.08
work $\int_{=0,05}^{0.05} F(x) d x=\int_{0.05}^{0.08} 800 x d x=\left.400 x^{2}\right|_{0.05} ^{0.08}=1.56(J)$
displacements from hat pos.
units: $[w]=[F \cdot x]=N \cdot m=J$

