Episode 9: Area between curves

Area between curves on Cartesian plane
By x-slices

area element

$$
d A=\underbrace{(f(x)-g(x))}_{\text {light }} \underbrace{d x}_{\text {base }}
$$

total area

$$
A=\int_{a}^{b} d A=\int_{a}^{b} \frac{(f(x)-g(x)) d x}{\text { total area lowers }} \text { length } f x \text {-slice }
$$

By y-slices

$$
\begin{aligned}
& \underbrace{d A=}_{\text {area eva }}(\underbrace{f(y)-g(y))}_{\text {base }} \underbrace{d y}_{\text {hight }}
\end{aligned}
$$

Ex. Find the area of a bounded region ekclosol b curves $y=x^{3}$ and $y=\sqrt{x}$.

Alt. 1 (b x-slices)

$$
\begin{aligned}
& d A=\left(\sqrt{x}-x^{3}\right) d x \\
& A=\int_{0}^{1} d A=\int_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x= \\
& {\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}}
\end{aligned}
$$

Alt, 2 (lg y-slices)

$$
\begin{aligned}
& d A=\left(\sqrt[3]{y}-y^{2}\right) d y \\
& A=\int_{y=0}^{y=1}\left(\sqrt[3]{y}-y^{2}\right) d y= \\
& =\left[\frac{3}{4} y^{\frac{y}{3}}-\frac{1}{3} y^{3}\right]_{0}^{1}=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}
\end{aligned}
$$

Sg. units

