Episode 8: Improper integrals of type II

S, S inf. hun'ts Type I Type I f(x) dx where f has an inf discondituity in [a, b] Type I $\int f(x) dx$ $\int has inf.$ disc. at a $\int has inf.$ disc. at a $\int disc. at b$ $\int c$ $\int b$ $\int c$ $\int c$ $\int t$ $\int c$ $\int c$ at b a + b $\frac{E_{X,V}}{\int \frac{dx}{\sqrt{x}}} = \lim_{t \to 0^+} \int \frac{dx}{\sqrt{x}} = \lim_{t \to 0^+} \left(2\sqrt{x} \right) \Big|_{t}^{t} = \lim_{t \to 0^+} \left(\sqrt{1} - \sqrt{t} \right) = 2$ Anower way of wridy: $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} \Big|^{1} = 2$

Comparison text for improper integrals (to estimate conv / div. of integrals) $-\infty \leq \alpha < b \leq \infty$

 $E_{X,5}$ Does $\int_{x^{5}+1}^{\infty} dx conv.$ or div.?

thoughs: $\frac{x^2}{x^5+1} \sim \frac{1}{x^3}$ as x-200 $\int \frac{dx}{x^3}$ conv. as put. *i* with *p*=3 >1