Episode 6: Average value of a function
discrete variable: the are value of

$$
\underbrace{y_{1}, \ldots, y_{n}}_{n \text { numbers }} \text { is Have }=\frac{y_{1}+y_{2}+\ldots+y_{n}}{n}
$$

continuous variate: $y=f(x)$ on $[a, b]$
Are value of $y=f(x)$ on $[a, b]$ is

$$
\text { fave }=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(number)

Geom. meaning: if $f \geqslant 0$

$$
\begin{aligned}
& \text { If } f \geqslant 0 \\
& f_{\text {ave }}=\frac{\text { Area }}{b-a}=\int_{a}^{\text {area }} \text { permit } \\
& \text { length } \\
& b
\end{aligned} f(x) d x=\text { Area }
$$

Mean Value theorem for itfgrals
If f is a cont. $f-n$ on $[a, b]$ then there exists $c \in[a, b]$ s. f.

$$
\Leftrightarrow \underbrace{\int_{a}^{b} f(x) d x}_{\underbrace{b}_{\text {Area }}}=\underbrace{f(c) \cdot(b-a)}_{\text {Area }}
$$

Ex. $f(x)=x^{2}, \quad$ Find fave on $[-1,1]$?

$$
f_{\text {ave }}=\frac{1}{1-(-1)} \int_{-1}^{1} x^{2} d x=\frac{1}{2} \cdot 2 \int_{0}^{1} x^{2} d x=\frac{1}{3} x^{3} \int_{0}^{1}=\frac{1}{3}
$$

