MAT131 Homework 31-32

Problems

1. Compute the following definite integrals:
(a) $\int_{1}^{2} \frac{6}{x}+\frac{\sqrt[3]{x^{2}}}{2}-\frac{1}{2 x^{3}} d x$
(b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{2}(x)-6 \csc (x) \cot (x) d x$
2. Find the derivatives of the following functions:
(a) $f(x)=\int_{0}^{e^{3 x}} \frac{1}{t^{4}+t^{2}+1} d t$
(b) $g(x)=\int_{x^{3}}^{x} \cos ^{4}(t)-\sin ^{2}(t) d t$
3. Consider

$$
f(x)=\int_{1}^{x^{2}} 3 t-12 d t
$$

(a) Find the extrema of f.
(b) Find the equation of the tangent line to f at $x=1$.
(c) Find the inflection points of f.
4. Determine the area between $f(x)=6 x-x^{2}$ and the x-axis.
5. Determine the area between $f(x)=x^{2}+2 x+4$ and $g(x)=3 x+6$
6. Determine the area between $f(x)=x^{2}, g(x)=x^{3}, x=0$ and $x=2$

Answer Key

1. (a) $\int_{1}^{2} \frac{6}{x}+\frac{1}{2} x^{\frac{2}{3}}-\frac{1}{2} x^{-3} d x=6 \ln (2)+\frac{3(4)^{\frac{1}{3}}}{5}-\frac{39}{80}$
(b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{2}(x)-6 \csc (x) \cot (x) d x=\frac{14}{\sqrt{3}}-12$
2. (a) $f^{\prime}(x)=\frac{3 e^{3 x}}{\left(e^{3 x}\right)^{4}+\left(e^{3 x}\right)^{2}+1}=\frac{3 e^{3 x}}{e^{12 x}+e^{6 x}+1}$
(b) $g^{\prime}(x)=\cos ^{4}(x)-\sin ^{2}(x)-\left(\cos ^{4}\left(x^{3}\right)-\sin ^{2}\left(x^{3}\right)\right)\left(3 x^{2}\right)$
3. (a) There are minima at $x= \pm 2$. There is a maximum at $x=0$.
(b) $y=-18 x+18$
(c) The points of inflection occur at $x= \pm \frac{2 \sqrt{3}}{3}$
4. 180
5. $\frac{9}{2}$
6. $\frac{3}{2}$

Solutions

1. (a) First, notice that we can rewrite

$$
\int_{1}^{2} \frac{1}{6 x}+\frac{\sqrt[3]{x^{2}}}{2}-\frac{1}{2 x^{3}} d x=\int_{1}^{2} \frac{1}{6 x}+\frac{1}{2} x^{\frac{2}{3}}-\frac{1}{2} x^{-3} d x
$$

The power rule for integration implies that

$$
\begin{aligned}
\int_{1}^{2} \frac{6}{x}+\frac{1}{2} x^{\frac{2}{3}}-\frac{1}{2} x^{-3} d x & =\left.\left(6 \ln (x)+\frac{3}{10} x^{\frac{5}{3}}+\frac{1}{4} x^{-2}\right)\right|_{1} ^{2} \\
& =\left(6 \ln (2)+\frac{3}{10} 2^{\frac{5}{3}}+\frac{1}{4}(2)^{-2}\right)-\left(6 \ln (1)+\frac{3}{10} 1^{\frac{5}{3}}+\frac{1}{4}(1)^{-2}\right) \\
& =6 \ln (2)+\frac{3(4)^{\frac{1}{3}}}{5}-\frac{39}{80}
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{2}(x)-6 \csc (x) \cot (x) d x & =\tan (x)+\left.6 \csc (x)\right|_{\frac{\pi}{6}} ^{\frac{\pi}{3}} \\
& =\tan \left(\frac{\pi}{3}\right)+6 \csc \left(\frac{\pi}{3}\right)-\left(\tan \left(\frac{\pi}{6}\right)+6 \csc \left(\frac{\pi}{6}\right)\right) \\
& =\sqrt{3}+\frac{12}{\sqrt{3}}-\left(\frac{1}{\sqrt{3}}+12\right) \\
& =\frac{14}{\sqrt{3}}-12
\end{aligned}
$$

2. (a) By the first Fundamental Theorem of Calculus and the chain rule,

$$
f^{\prime}(x)=\frac{3 e^{3 x}}{\left(e^{3 x}\right)^{4}+\left(e^{3 x}\right)^{2}+1}=\frac{3 e^{3 x}}{e^{12 x}+e^{6 x}+1}
$$

(b) First, notice

$$
\begin{aligned}
g(x) & =\int_{0}^{x} \cos ^{4}(t)-\sin ^{2}(t) d t+\int_{x^{3}}^{0} \cos ^{4}(t)-\sin ^{2}(t) d t \\
& =\int_{0}^{x} \cos ^{4}(t)-\sin ^{2}(t) d t-\int_{0}^{x^{3}} \cos ^{4}(t)-\sin ^{2}(t) d t
\end{aligned}
$$

It follows from first Fundamental Theorem of Calculus and the chain rule that

$$
g^{\prime}(x)=\cos ^{4}(x)-\sin ^{2}(x)-\left(\cos ^{4}\left(x^{3}\right)-\sin ^{2}\left(x^{3}\right)\right)\left(3 x^{2}\right)
$$

3. (a) By the first Fundamental Theorem of Calculus and the chain rule,

$$
f^{\prime}(x)=\left(3 x^{2}-12\right)(2 x) .
$$

It follows that $f^{\prime}(x)=0$ when $x=-2,0,2$. The first derivative test implies that f has a minimum at $x=-2$ and $x=2$ and f has a maximum at $x=0$.
(b) Since $f^{\prime}(1)=\left(3(1)^{2}-12\right)(2(1))=-18$ and

$$
f(1)=\int_{1}^{1} 3 t-12 d t=0
$$

the point-slope formula implies that the equation of the tangent line is given by

$$
y=y-0=-18(x-1)=-18 x+18
$$

(c) Recall that

$$
f^{\prime}(x)=\left(3 x^{2}-12\right)(2 x)=6 x^{3}-24 x .
$$

It follows that

$$
f^{\prime \prime}(x)=18 x^{2}-24
$$

It follows that the inflection points occur at $x= \pm \frac{2 \sqrt{3}}{3}$.
4. Since $6 x-x^{2}=x(6-x)=0$ when $x=0$ and $x=6$, the area between $f(x)$ and the x-axis is given by

$$
\int_{0}^{6} 6 x-x^{2} d x=\left.\left(3 x^{2}+\frac{1}{3} x^{3}\right)\right|_{0} ^{6}=3(6)^{2}+\frac{6^{3}}{3}=180
$$

5. The curves $f(x)$ and $g(x)$ intersect when

$$
x^{2}+2 x+4=3 x+6
$$

Simplifying gives

$$
x^{2}-x-2=0
$$

It follows that $f(x)$ and $g(x)$ intersect at $x=-1$ and $x=2$. It follows that the area between f and g is given by

$$
\begin{aligned}
\int_{-1}^{2} 3 x+6-\left(x^{2}+2 x+4\right) d x & =\int_{-1}^{2}-x^{2}+x+2 d x \\
& =\left.\left(-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right)\right|_{-1} ^{2} \\
& =\left(-\frac{2^{3}}{3}+\frac{2^{2}}{2}+2(2)\right)-\left(-\frac{(-1)^{3}}{3}+\frac{(-1)^{2}}{2}+2(-1)\right) \\
& =\frac{9}{2} .
\end{aligned}
$$

6. Notice that $x^{2}=x^{3}$ when

$$
x 0=x^{3}-x^{2}=x^{2}(x-1)
$$

It follows that $f(x)$ and $g(x)$ intersect when $x=0$ and $x=1$. It follows that the area between f and g is given by

$$
\begin{aligned}
\int_{0}^{1} x^{2}-x^{3} d x+\int_{1}^{2} x^{3}-x^{2} d x & =\left.\left(\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{1}+\left.\left(\frac{1}{4} x^{4}-\frac{1}{3} x^{3}\right)\right|_{1} ^{2} \\
& =\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\left(\frac{(2)^{4}}{4}-\frac{(2)^{3}}{3}\right)-\left(\frac{1}{4}-\frac{1}{3}\right)\right) \\
& =\frac{3}{2}
\end{aligned}
$$

