MAT131 Homework 29-30

Problems

1. Given the following table,

x	0	1	2	3	4	5	6
$f(x)$	1	2	5	9	17	26	37

(a) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a left hand Riemann sum with 6 rectangles of equal width,
(b) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a right hand Riemann sum with 6 rectangles of equal width.
(c) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a midpoint Riemann sum with 3 rectangles of equal width.
2. Estimate the area under $f(x)=4 x-x^{2}$ between $x=0$ and $x=4$.
(a) using n left hand rectangles.
(b) using n right hand rectangles.
3. Consider the integral $\int_{-9}^{9} \sqrt{81-x^{2}}$.
(a) Express the integral as a limit of Riemann sums.
(b) Find the exact value of the integral.
4. Use the definition of the integral as a limit of Riemann sums to compute

$$
\int_{-2}^{1} 7-4 x d x
$$

5. Compute $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1-\frac{i^{2}}{n^{2}}}\left(\frac{4}{n}\right)$.

Answer Key

1. (a) $L_{6}=60$
(b) $R_{6}=96$
(c) $M_{3}=74$
2. (a) $L_{n}=\frac{64 n(n-1)}{n^{2}}-\frac{64 n(n-1)(2 n-1)}{6 n^{3}}$
(b) $R_{n}=\frac{64 n(n+1)}{n^{2}}-\frac{64 n(n+1)(2 n+1)}{6 n^{3}}$
3. (a) $\int_{-9}^{9} \sqrt{81-x^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{324 i^{2}}{n^{2}}-\frac{324 i}{n}}\left(\frac{18}{n}\right)$
(b) $\int_{-9}^{9} \sqrt{81-x^{2}}=\frac{81}{2} \pi$
4. $\int_{-2}^{1} 7-4 x d x=27$.
5. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1-\frac{i^{2}}{n^{2}}}\left(\frac{4}{n}\right)=\pi$.

Solutions

1. (a) The width of each rectangle is given by $\Delta x=\frac{6-0}{6}=1$. The left hand Riemann sum is given by

$$
\begin{aligned}
(f(0)+f(1)+f(2)+f(3)+f(4)+f(5)) \Delta x & =(1+2+5+9+17+26)(1) \\
& =60
\end{aligned}
$$

(b) The width of each rectangle is given by $\Delta x=\frac{6-0}{6}=1$. The right hand Riemann sum is given by

$$
\begin{aligned}
(f(1)+f(2)+f(3)+f(4)+f(5)+f(6)) \Delta x & =(2+5+9+17+26+37)(1) \\
& =96
\end{aligned}
$$

(c) The width of each rectangle is given by $\Delta x=\frac{6-0}{3}=2$. The midpoint Riemann sum is given by

$$
(f(1)+f(3)+f(5)+) \Delta x=(2+9+26)(2)=74
$$

2. The width of each rectangle is given by $\Delta x=\frac{4-0}{n}=\frac{4}{n}$. The $i^{\text {th }}$ endpoint of the partition is given by $x_{i}=\frac{4 i}{n}$. It follows that:
(a) The left hand Riemann sum is given by

$$
\begin{aligned}
L_{n} & =\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=0}^{n-1}\left(4 \frac{4 i}{n}-\left(\frac{4 i}{n}\right)^{2}\right) \frac{4}{n} \\
& =\sum_{i=0}^{n-1}\left(\frac{16 i}{n}-\frac{16 i^{2}}{n^{2}}\right) \frac{4}{n} \\
& =\sum_{i=0}^{n-1} \frac{64 i}{n^{2}}-\frac{64 i^{2}}{n^{3}} \\
& =\frac{64 n(n-1)}{n^{2}}-\frac{64 n(n-1)(2 n-1)}{6 n^{3}}
\end{aligned}
$$

(b) The right hand Riemann sum is given by

$$
\begin{aligned}
L_{n} & =\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=0}^{n-1}\left(4 \frac{4 i}{n}-\left(\frac{4 i}{n}\right)^{2}\right) \frac{4}{n} \\
& =\sum_{i=0}^{n-1}\left(\frac{16 i}{n}-\frac{16 i^{2}}{n^{2}}\right) \frac{4}{n} \\
& =\sum_{i=0}^{n-1} \frac{64 i}{n^{2}}-\frac{64 i^{2}}{n^{3}} \\
& =\frac{64 n(n+1)}{n^{2}}-\frac{64 n(n+1)(2 n+1)}{6 n^{3}}
\end{aligned}
$$

3. The width of each rectangle is $\Delta x=\frac{9-(-9)}{n}=\frac{18}{n}$. The $i^{t h}$ endpoint of the partition is given by $x_{i}=-9+\frac{18 i}{n}$. It follows that the right hand Riemann sum with n-rectangles is given by

$$
\begin{aligned}
R_{n} & =\sum_{i=1}^{n} \sqrt{81-\left(-9+\frac{18 i}{n}\right)^{2}}\left(\frac{18}{n}\right) \\
& =\sum_{i=1}^{n} \sqrt{\frac{324 i^{2}}{n^{2}}-\frac{324 i}{n}}\left(\frac{18}{n}\right)
\end{aligned}
$$

It follows that

$$
\int_{-9}^{9} \sqrt{81-x^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{324 i^{2}}{n^{2}}-\frac{324 i}{n}}\left(\frac{18}{n}\right)
$$

4. The definite integral can be interpreted as the area of half of a circle of radius 9 . It follows that

$$
\int_{-9}^{9} \sqrt{81-x^{2}}=\frac{81}{2} \pi
$$

5. We first write down the right hand Riemann sum with n rectangles. The width of each rectangle is given by

$$
\Delta x=\frac{1-(-2)}{n}=\frac{3}{n}
$$

The $i^{\text {th }}$ endpoint of the partition is given by

$$
x_{i}=-2+\frac{3 i}{n}
$$

It follows that the right hand Riemann sum is given by

$$
\begin{aligned}
R_{n} & =\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=1}^{n}\left(7-4\left(-2+\frac{3 i}{n}\right)\right) \frac{3}{n} \\
& =\sum_{i=1}^{n}\left(15-\frac{12 i}{n}\right) \frac{3}{n} \\
& =\sum_{i=1}^{n} \frac{45}{n}-\frac{36 i}{n^{2}} \\
& =45-\frac{36 n(n+1)}{2 n^{2}}
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} 45-\frac{36 n(n+1)}{2 n^{2}}=45-18=27
$$

6. Notice that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1-\frac{i^{2}}{n^{2}}}\left(\frac{4}{n}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4-\frac{4 i^{2}}{n^{2}}}\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4-\left(\frac{2 i}{n}\right)^{2}}\left(\frac{2}{n}\right) .
\end{aligned}
$$

We can interpret the limit as a limit of Riemann sums with $\Delta x=\frac{2}{n}$, $x_{i}=\frac{2 i}{n}$, and $f(x)=\sqrt{4-x^{2}}$. By definition of the definite integral,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4-\left(\frac{2 i}{n}\right)^{2}}\left(\frac{2}{n}\right)=\int_{0}^{2} \sqrt{4-x^{2}} d x
$$

The definite integral on the right can be interpreted as the area of a quarter of a circle of radius 2. It follows that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1-\frac{i^{2}}{n^{2}}}\left(\frac{4}{n}\right)=\int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{1}{4}(4 \pi)=\pi .
$$

