MAT131 Homework 27-28

Problems

1. Evaluate $\int_{3}^{6}|2 x-10| d x$ by interpreting the definite integral as a signed area.
2. Suppose

$$
f(x)= \begin{cases}\sqrt{25-x^{2}} & \text { if } 0 \leq x<5 \\ x-5 & \text { if } x \geq 5\end{cases}
$$

Evaluate $\int_{0}^{7} f(x) d x$ by interpreting the definite integral as a signed area.
3. Evaluate the following definite integral:

$$
\int_{-1}^{1} \frac{\tan (x)}{x^{4}+x^{2}+1} d x
$$

4. Suppose that $f(x)$ is an even function and $\int_{-10}^{10} f(x) d x=12$. Compute
(a) $\int_{0}^{10} f(x)+x d x$
(b) $\int_{-10}^{10} f(x) \sin (x)+x d x$
5. If $x+7 \leq f(x) \leq \sqrt{49-x^{2}}$ for all $x \in[-7,0]$, find upper and lower bounds for $\int_{-7}^{0} f(x) d x$.

Answer Key

1. $\int_{3}^{6}|2 x-10| d x=5$
2. $\int_{0}^{7} f(x) d x=\frac{25}{4} \pi+2$
3. $\int_{-1}^{1} \frac{\tan (x)}{x^{4}+x^{2}+1} d x=0$
4. (a) $\int_{0}^{10} f(x)+x d x=6+50=56$
(b) $\int_{-10}^{10} f(x) \sin (x)+x d x=0$
5. $\frac{49}{2} \leq \int_{-7}^{0} f(x) d x \leq \frac{49}{4} \pi$

Solutions

1. Notice that the integrand can be expressed as

$$
|2 x-10|= \begin{cases}10-2 x & \text { if } x<5 \\ 2 x-10 & \text { if } x \geq 5\end{cases}
$$

It follows that

$$
\int_{3}^{6}|2 x-10| d x=\int_{3}^{5} 10-2 x d x+\int_{5}^{6} 2 x-10 d x
$$

The first integral can be interpreted as the area of a right triangle with height 4 and width 2 . It follows that

$$
\int_{3}^{5} 10-2 x d x=\frac{1}{2}(4)(2)=4
$$

The second integral can be interpreted as the negative of the area of a right triangle with height 2 and width 1 . It follows that

$$
\int_{5}^{6} 2 x-10 d x=\frac{1}{2}(2)(1)=1 .
$$

We conclude that

$$
\int_{3}^{6}|2 x-10| d x=4+1=5 .
$$

2. We have

$$
\int_{0}^{7} f(x) d x=\int_{0}^{5} \sqrt{25-x^{2}} d x+\int_{5}^{7} x-5 d x
$$

The first integral can be interpreted as the area of a quarter of a circle of radius 5 . It follows that

$$
\int_{0}^{5} \sqrt{25-x^{2}} d x=\frac{1}{4}\left(\pi(5)^{2}\right)=\frac{25}{4} \pi .
$$

The second integral can be interpreted as the area of a right triangle with height 2 and width 2 . It follows that

$$
\int_{5}^{7} x-5 d x=\frac{1}{2}(2)(2)=2
$$

We conclude that

$$
\int_{0}^{7} f(x) d x=\frac{25}{4} \pi+2
$$

3. Notice that $\frac{\tan (x)}{x^{4}+x^{2}+1}$ is an odd function. It follows that

$$
\int_{-1}^{1} \frac{\tan (x)}{x^{4}+x^{2}+1} d x=0 .
$$

4. (a) Notice that

$$
\int_{0}^{10} f(x)+x d x=\int_{0}^{10} f(x) d x+\int_{0}^{10} x d x
$$

Since $f(x)$ is an even function,

$$
\int_{0}^{10} f(x) d x=\frac{1}{2} \int_{-10}^{10} f(x) d x=\frac{1}{2}(12)=6 .
$$

The second integral can be interpreted as the area of a right triangle with height 10 and width 10 . It follows that

$$
\int_{0}^{10} x d x=\frac{1}{2}(10)(10)=50
$$

It follows that

$$
\int_{0}^{10} f(x)+x d x=6+50=56
$$

(b) Since $f(x)$ is even and $\sin (x)$ is odd, $f(x) \sin (x)$ is odd. Notice that $g(x)=x$ is also an odd function. It follows that

$$
\int_{-10}^{10} f(x) \sin (x)+x d x=0
$$

5. By monotonicity of the integral,

$$
\int_{-7}^{0} x+7 d x \leq \int_{-7}^{0} f(x) d x \leq \int_{-7}^{0} \sqrt{49-x^{2}} d x
$$

The leftmost integral can be interpreted as the area of a right triangle with height 7 and width 7 . It follows that

$$
\int_{-7}^{0} x+7=\frac{1}{2}(7)(7)=\frac{49}{2} .
$$

The rightmost integral can be interpreted as the area of a quarter of a circle of radius 7 . It follows that

$$
\int_{-7}^{0} \sqrt{49-x^{2}} d x=\frac{1}{4}\left(\pi(7)^{2}\right)=\frac{49}{4} \pi .
$$

It follows that

$$
\frac{49}{2} \leq \int_{-7}^{0} f(x) d x \leq \frac{49}{4} \pi
$$

