MAT131 Homework for Lectures 25-26

July 16, 2021

1 Problems

1. Compute $\int x^{2020}-3 \sin (5 x) d x$. Check your answer with differentiation.
2. Compute $\int e^{\pi x}-\sec ^{2}(x) d x$. Check your answer with differentiation.
3. Find the antiderivative of the antiderivative of the antiderivative of $f(x)=x^{7}-x^{5}+\frac{1}{x^{3}}$.
4. Find the derivative of $y=\tan ^{-1}(x)$ using implicit differentiation.
5. Find the antiderivative of $g(u)=\left(u^{2}+1\right)^{-1}$.
6. Compute $\int \sin ^{2} \theta d \theta$ and check your answer by differentiation.

2 Answer Key

1. $\frac{x^{2021}}{2021}+\frac{3}{5} \cos (5 x)+C$
2. $\frac{e^{\pi x}}{\pi}-\tan (x)+C$
3. $F(x)=\frac{x^{10}}{720}-\frac{x^{8}}{336}+\frac{1}{2} \ln (x)+C$
4. $\frac{d y}{d x}=\frac{1}{1+x^{2}}$
5. $G(u)=\tan ^{-1}(u)+C$
6. $\frac{1}{2}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C$

3 Solution

1. Just use the power rule for the first term and think about the derivatives of $\sin (x)$ and $\cos (x)$ for the second term. Those derivatives (up to constants) have a periodic behavior.
2. One just needs to remember that $\frac{d}{d x} \tan (x)=\sec ^{2} x$.
3. Apply power rule 3 times. The last time, recall that $\frac{d}{d x} \ln (x)=1 / x$.
4. Rewrite the equation as $\tan y=x$. Then implicit differentiation gives $\sec ^{2}(y) \frac{d y}{d x}=1$ so $\frac{d y}{d x}=\cos ^{2}(y)$. We may reinterpret $\tan (y)=x$ as saying that the tangent of the angle y of a right triangle is $x / 1$; i.e. the opposite over the adjacent. Hence, the hypotenuse has length $\sqrt{1+x^{2}}$. The cosine of the angle is adjacent over hypotenuse; squaring this, we get $\cos ^{2}(y)=\frac{1}{1+x^{2}}$.
5. Question 3 basically gives the answer: $G(u)=\tan ^{-1}(u)+C$.
6. Use the trig identity $\cos (2 \theta)=1-2 \sin ^{2} \theta$. So we're integrating: $\int \frac{1}{2}(1-\cos (2 \theta)) d \theta$. So then, this equals $\frac{1}{2}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C$.
