MAT131 Homework for Lectures 23

July 16, 2021

1 Problems

1. A 25 ft ladder is leaning against a vertical wall. The bottom starts to slide away from the wall at $3 \mathrm{ft} / \mathrm{s}$. How fast is the top sliding down when the top is 20 ft above the ground?
2. A conical tank has a height of 18 m and a radius of 6 m ; it's positioned so that the nose of the cone is pointing groundward. It is filling with water at a rate of $14 \pi \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water rising when the water is 10 m high?
3. A rocket is launched vertically at $4 \mathrm{mi} / \mathrm{s}$ and you're standing 9 mi from the launch site. How fast is the angle of elevation changing after 3 seconds have passed?
4. Air is being pumped into a spherical hot air balloon (made from special elastic material) so that the volume increases at a rate of $10,000 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius of the hot air balloon increasing when the diamater is 20 m ? Be careful with units.
5. An ice cube is melting. At the moment when its volume is $27 \mathrm{~cm}^{3}$, its surface area is decreasing at a rate of $5 \mathrm{~cm}^{2}$ per minute. At what rate is the volume decreasing at this moment?

2 Answer Key

1. $\frac{d y}{d t}=-\frac{9}{4} \mathrm{ft} / \mathrm{s}$
2. $\frac{d h}{d t}=\frac{63}{50} \mathrm{~m} / \mathrm{min}$
3. $\frac{d \theta}{d t}=\frac{36}{225} \mathrm{rad} / \mathrm{s}$
4. $\frac{d r}{d t}=\frac{1}{40,000 \pi} \mathrm{~cm} / \mathrm{s}$
5. $\frac{d V}{d t}=-\frac{15}{4} \mathrm{~cm}^{3} / \min$

3 Solution

1. Let x represent the horizontal distance between the foot of the ladder and the wall. Let y be the distance between the top of the ladder and the ground. Then, $x^{2}+y^{2}=25^{2}$ is one relation between x and y. Differentiating, we get $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$. On the other hand, when $y=20 \mathrm{ft}$, then $x^{2}=625-400=225=15^{2}$. So $x=15 \mathrm{ft}$. So plugging in, we have $2(15 \mathrm{ft})(3 \mathrm{ft} / \mathrm{s})+2(20 \mathrm{ft}) \frac{d y}{d t}=0$. Then solve: $\frac{d y}{d t}=-\frac{9}{4} \mathrm{ft} / \mathrm{s}$.
2. As the water rises, the radius and height of the cone of water changes but their ratio does not. The height is always $18 / 6=3$ times the radius. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. Plugging in that $r=h / 3$, we have $V=\frac{1}{27} \pi h^{3}$ and differentiating, $\frac{d V}{d t}=\frac{1}{9} \pi h^{2} \frac{d h}{d t}$. We're told that $\frac{d V}{d t}=14 \pi$ and we're asked to find $\frac{d h}{d t}$ when $h=10$. Solving, we get $\frac{d h}{d t}=\frac{63}{50}$ $\mathrm{m} / \mathrm{min}$.
3. Let x represent the height of the rocket. The relationship between the angle of elevation θ and the height of the rocket is given by $\tan \theta=x / 9$. So then differentiating, we have $\frac{d x}{d t}=9 \sec ^{2} \theta \frac{d \theta}{d t}$. After 3 seconds, the rocket is 12 miles high. So $\tan \theta=12 / 9$ and the hypotenuse of the triangle is 15 mi . So then, $\sec \theta=15 / 9$ and hence we have the equation $4=\frac{225}{9} \frac{d \theta}{d t}$. So $\frac{d \theta}{d t}=\frac{36}{225} \mathrm{rad} / \mathrm{s}$.
4. The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$ and $\frac{d V}{d r}=4 \pi r^{2}$. Also, the chain rule tells us that $\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}$. Plugging in the numbers and remembering that $1 \mathrm{~m}=100 \mathrm{~cm}$ and the radius is half the diameter, we have $10,000 \mathrm{~cm}^{3} / s=4 \pi(10,000 \mathrm{~cm})^{2} \cdot \frac{d r}{d t}$. Then $\frac{d r}{d t}=\frac{1}{40,000 \pi} \mathrm{~cm} / \mathrm{s}$. Quite slow.
5. Let x be the side length of the cube. So the volume is $V=x^{3}$, the surface area is $A=6 x^{2}$. Then $\frac{d V}{d x}=3 x^{2}$ and $\frac{d A}{d x}=12 x$. Also, by the chain rule, $\frac{d V}{d t}=\frac{d V}{d x} \cdot \frac{d x}{d t}=3 x^{2} \cdot \frac{d x}{d t}$ and $\frac{d A}{d t}=\frac{d A}{d x} \cdot \frac{d x}{d t}=12 x \cdot \frac{d x}{d t}$. At this moment in question, $V=27$ so $x=3$.
Plugging in the values, we have that $\frac{d A}{d t}=-5=36 \cdot \frac{d x}{d t}$. So $\frac{d x}{d t}=-\frac{5}{36}$ and hence, $\frac{d V}{d t}=-\frac{15}{4} \mathrm{~cm}^{3} / \mathrm{min}$.
