MAT131 Homework for Lectures 19-20

July 16, 2021

1 Problems

1. Let $f(x)=x^{4}-8 x^{2}+10$. Sketch a graph of the function, labeling the local extrema in (x, y)-form.
2. Let $g(x)=\frac{\ln (x)}{x}$. Sketch the graph of the function on its domain of definition, labeling the local extrema in (x, y)-form and also the x-intercept. Also, label the horizontal and vertical asymptotes.

Consider the function $f(x)=e^{1 /\left(x^{2}+1\right)}$.
3. Find the 1 st derivative of $f(x)$.
4. Find the critical points and values, written in (x, y)-form, of $f(x)$.
5. Find the 2nd derivative of $f(x)$.
6. Find the critical points of $f^{\prime}(x)$ and label them as local max/min or inflection point.
7. Graph $f(x)$ and $f^{\prime}(x)$ and label critical points and asymptotes.

2 Answer Key

1. Local max: $(0,10)$, absolute min: $(\pm 2,-6)$.

2. Absolute max: $\left(e, \frac{1}{e}\right), x$-intercept: $(1,0)$. Horizontal asymptote: $y=0$, vertical asymptote: $x=0$.

3.

$$
f^{\prime}(x)=-\frac{2 x}{\left(x^{2}+1\right)^{2}} \exp \left(\frac{1}{x^{2}+1}\right)
$$

4. $(0, e)$.
5.

$$
f^{\prime \prime}(x)=\left(\frac{6 x^{4}+8 x^{2}-2}{\left(x^{2}+1\right)^{4}}\right) \exp \left(\frac{1}{x^{2}+1}\right) .
$$

6. $x= \pm \sqrt{(\sqrt{7}-2) / 3}$. The negative root is the local max, the positive is the local min.
7. The blue curve is the graph of $f(x)$, the red is of $f^{\prime}(x)$.

3 Solution

1. $f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)$. So the critical points are $x= \pm 2,0$. The 2 nd derivative is $f^{\prime \prime}(x)=12 x^{2}-16=4\left(3 x^{2}-4\right)$ and its zeros are $\pm \frac{2}{\sqrt{3}}$. This tells us that the critical points are not inflection points but extrema and concavity tests show that $(0,10)$ is concave down, hence a local max. The absolute min are $(\pm 2,-6)$. See picture above.
2. $\ln (x)$ is defined on $(0, \infty)$. By quotient rule, $g^{\prime}(x)=(1-\ln (x)) / x^{2}$. So its one critical point is at $x=e$. Then $\left(e, \frac{1}{e}\right)$ is its maximum. This can be checked by observing that $g^{\prime}(x)>0$ for $x<e$ and $g^{\prime}(x)<0$ for $x>e$.
$(1,0)$ is the only x-intercept since $\ln (x)<0$ for $x<1$ while $g(x)>0$ for $x>1$. $\lim _{x \rightarrow \infty} g(x)=0$ gives $y=0$ as a horizontal asymptote and $x=0$ is the vertical asymptote.
3. Write $f(x)=e^{g(x)}$ where $g(x)=\left(x^{2}+1\right)^{-1} ; g^{\prime}(x)=-2 x\left(x^{2}+1\right)^{-2}$, and by the quotient rule:

$$
g^{\prime \prime}(x)=\frac{-2\left(x^{2}+1\right)^{2}-(-2 x) 2\left(x^{2}+1\right) 2 x}{\left(x^{2}+1\right)^{4}}=\frac{8 x^{2}\left(x^{2}+1\right)-2\left(x^{2}+1\right)^{2}}{\left(x^{2}+1\right)^{4}}=\frac{6 x^{4}+4 x^{2}-2}{\left(x^{2}+1\right)^{4}} .
$$

Then

$$
f^{\prime}(x)=g^{\prime}(x) e^{g(x))}=-\frac{2 x}{\left(x^{2}+1\right)^{2}} \exp \left(\frac{1}{x^{2}+1}\right)
$$

by chain rule.
4. The global maximum of $f(x)$ can be found without the 1st derivative simply by noting that $1 /\left(x^{2}+1\right)$ is largest when $x=0$ and that e^{x} is an increasing function. The 1st derivative confirms there is only one critical point and the pair is $(0, e)$.
5. Using chain rule and product rule,

$$
f^{\prime \prime}(x)=g^{\prime \prime}(x) e^{g(x)}+\left(g^{\prime}(x)\right)^{2} e^{g(x)}=\left(\frac{6 x^{4}+8 x^{2}-2}{\left(x^{2}+1\right)^{4}}\right) \exp \left(\frac{1}{x^{2}+1}\right) .
$$

6. Set $f^{\prime \prime}(x)=0$. This amounts to solving the quartic equation $3 x^{4}+4 x^{2}-1=0$. However, this reduces to a quadratic by letting $z=x^{2}$; so we can just use the quadratic formula for $3 z^{2}+4 z-1=0$. The solutions are

$$
z=x^{2}=\frac{-2 \pm \sqrt{7}}{3}
$$

One of these is negative so there are no real solutions $x^{2}=$ negative number. But ($\sqrt{7}-$ 2) $/ 3$ is positive and so this has two real square roots: $\pm \sqrt{(\sqrt{7}-2) / 3}$. Note that plugging in the negative root into $f^{\prime}(x)$ gives a positive value (just look at the signs) while the positive root gives a negative value.
7. See answer key for graphs.

The graph of $f(x)$ is straightforward; there is one global max and the function is even and decays rapidly to the value e. So the horizontal asymptote is $y=e$.

For graphing $f^{\prime}(x)$, note that from above, $3 z^{2}+4 z-1$ is quadratic; well, secretly, it is quartic because $z=x^{2}$ but there are only 2 real roots. So this gives us the rough shape of $f^{\prime}(x): f^{\prime}(x)$ is increasing before the negative root and after the positive root but decreasing between the roots. So we can see that $f^{\prime}(x)$ is an odd function and in fact, the local extrema are also absolute extrema. As $x \rightarrow \pm \infty,-\frac{2 x}{\left(x^{2}+1\right)^{2}} \rightarrow 0$ (bottom power is 4 , top power is 1). So the horizontal asymptote for $f^{\prime}(x)$ is $y=0$.

