MAT131 Homework for Lectures 16-18

July 13, 2021

1 Problems

- 1. Find the linear approximation of $y = \tan(x)$ at $x = \pi/4$ by giving the equation of a line.
- 2. Find the linear approximation of the function $f(x) = \sqrt{1-x^2}$ at x = 1 by giving the equation of a line.
- 3. Find the absolute max/min of $f(x) = 2x^3 x^2 7x 5$ on the interval [-2, 3].
- 4. Find the absolute max/min of $f(x) = x^2 e^x$ on the interval $[-1, \infty)$.
- 5. Use the Mean Value Theorem to show that $f(x) = x^3 7x^2 + 25x + 8$ has exactly one real root.

2 Answer Key

- 1. $y = 1 + 2(x \pi/4)$
- 2. x = 1
- 3. Absolute min: $x = (1 + \sqrt{43})/6$, absolute max: x = 3
- 4. Absolute min: x = 0, absolute max: x = -1
- 5. See solution

3 Solution

1. The equation of linearization is L(x) = f(a) + f'(a)(x - a).

 $dy/dx = \sec^2(x)$. At $x = \pi/4$, the slope is 2. So the equation of the line is given by $y = 1 + 2(x - \pi/4)$.

- 2. $f'(x) = -x(1-x^2)^{-1/2}$. So as $x \to 1$, the slope goes to infinity. This means that the best approximating line is a vertical one: x = 1.
- 3. $f'(x) = 6x^2 2x 7$ and the quadratic formula gives roots $x = (2 \pm \sqrt{4 + 168})/12 = (1 \pm \sqrt{43})/6$. The local max is at the negative root and the local max is at the positive root.

Note that $6 < \sqrt{43} < 7$ so $-1 < (1 - \sqrt{43})/6 < -5/6 < 0$ and so $f((1 - \sqrt{43})/6)$ is near f(-1) = -1. On the other hand, f(3) = 19. So x = 3 is the absolute maximum.

To check the other root, note $\frac{7}{6} < (1 + \sqrt{43})/6 < \frac{8}{6}$. So then, since $(1 + \sqrt{43})/6$ is a local minimum, $f((1 + \sqrt{43})/6)$ must be less than both $f(\frac{7}{6}) = -\frac{613}{54}$ and $f(\frac{8}{6}) = -\frac{307}{27}$. Once can check that both of those values are less than f(-2) = -11. Hence, $(1 + \sqrt{43})/6$ is an absolute minimum.

In conclusion, the local min $x = (1 + \sqrt{43})/6$ is the absolute min but the absolute max is at the endpoint x = 3.

- 4. $f'(x) = 2xe^{-x} x^2e^{-x} = x(2-x)e^{-x}$. So the critical points are at x = 0, 2. x = 0 is a local minimum since clearly $f(x) \ge 0$ and f(0) = 0. $f(2) = 4e^{-2}$ where as f(-1) = e. Since 2 < e, $4 < e^2$ and hence $4e^{-2} < 1$. This means x = -1 is the global max on $[-1, \infty)$.
- 5. f(x) is cubic and so $\lim_{x\to\pm\infty} f(x) = \pm\infty$; by the Intermediate Value Theorem, f has at least one real root x = a; we'll take a to be the smallest one. Now suppose f has a 2nd real root at x = b. So f(a) = f(b) = 0.

By the MVT (or Rolle's theorem), the exists $c \in [a, b]$ such that $f'(c) = \frac{f(b)-f(a)}{b-a} = 0$. That is, c is a critical point of f. Let's compute $f'(x) = 3x^2 - 14x + 25$. Observe that $b^2 - 4ac = 196 - 300 < 0$. So there are no real roots and hence, no critical points. Therefore, there cannot exist such a c.

An shorter solution is to just directly show that f(x) is always increasing by studying the derivative but the point is to practice using the MVT.