MAT131 Homework for Lectures 16-18

July 13, 2021

1 Problems

1. Find the linear approximation of $y=\tan (x)$ at $x=\pi / 4$ by giving the equation of a line.
2. Find the linear approximation of the function $f(x)=\sqrt{1-x^{2}}$ at $x=1$ by giving the equation of a line.
3. Find the absolute $\max /$ min of $f(x)=2 x^{3}-x^{2}-7 x-5$ on the interval $[-2,3]$.
4. Find the absolute \max / min of $f(x)=x^{2} e^{x}$ on the interval $[-1, \infty)$.
5. Use the Mean Value Theorem to show that $f(x)=x^{3}-7 x^{2}+25 x+8$ has exactly one real root.

2 Answer Key

1. $y=1+2(x-\pi / 4)$
2. $x=1$
3. Absolute min: $x=(1+\sqrt{43}) / 6$, absolute max: $x=3$
4. Absolute min: $x=0$, absolute max: $x=-1$
5. See solution

3 Solution

1. The equation of linearization is $L(x)=f(a)+f^{\prime}(a)(x-a)$.
$d y / d x=\sec ^{2}(x)$. At $x=\pi / 4$, the slope is 2 . So the equation of the line is given by $y=1+2(x-\pi / 4)$.
2. $f^{\prime}(x)=-x\left(1-x^{2}\right)^{-1 / 2}$. So as $x \rightarrow 1$, the slope goes to infinity. This means that the best approximating line is a vertical one: $x=1$.
3. $f^{\prime}(x)=6 x^{2}-2 x-7$ and the quadratic formula gives roots $x=(2 \pm \sqrt{4+168}) / 12=$ $(1 \pm \sqrt{43}) / 6$. The local max is at the negative root and the local max is at the positive root.
Note that $6<\sqrt{43}<7$ so $-1<(1-\sqrt{43}) / 6<-5 / 6<0$ and so $f((1-\sqrt{43}) / 6)$ is near $f(-1)=-1$. On the otherhand, $f(3)=19$. So $x=3$ is the absolute maximum.
To check the other root, note $\frac{7}{6}<(1+\sqrt{43}) / 6<\frac{8}{6}$. So then, since $(1+\sqrt{43}) / 6$ is a local minimum, $f((1+\sqrt{43}) / 6)$ must be less than both $f\left(\frac{7}{6}\right)=-\frac{613}{54}$ and $f\left(\frac{8}{6}\right)=-\frac{307}{27}$. Once can check that both of those values are less than $f(-2)=-11$. Hence, $(1+\sqrt{43}) / 6$ is an absolute minimum.
In conclusion, the local min $x=(1+\sqrt{43}) / 6$ is the absolute min but the absolute max is at the endpoint $x=3$.
4. $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=x(2-x) e^{-x}$. So the critical points are at $x=0,2 . x=0$ is a local minimum since clearly $f(x) \geq 0$ and $f(0)=0 . f(2)=4 e^{-2}$ where as $f(-1)=e$. Since $2<e, 4<e^{2}$ and hence $4 e^{-2}<1$. This means $x=-1$ is the global max on $[-1, \infty)$.
5. $f(x)$ is cubic and so $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$; by the Intermediate Value Theorem, f has at least one real root $x=a$; we'll take a to be the smallest one. Now suppose f has a 2 nd real root at $x=b$. So $f(a)=f(b)=0$.
By the MVT (or Rolle's theorem), the exists $c \in[a, b]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$. That is, c is a critical point of f. Let's compute $f^{\prime}(x)=3 x^{2}-14 x+25$. Observe that $b^{2}-4 a c=196-300<0$. So there are no real roots and hence, no critical points. Therefore, there cannot exist such a c.
An shorter solution is to just directly show that $f(x)$ is always increasing by studying the derivative but the point is to practice using the MVT.
