## 1

Compute the derivative of the following functions:

1. $f(x)=\sin \left(x^{2}\right) \cos \left(x^{2}\right)$
2. $g(x)=\tan \left(e^{\sin (x)}\right)$

## 2

Given the function $f(x)=\log _{a}\left(x^{\ln (b)}\right)$, prove that $f^{\prime}(1)=\log _{a}(b)$.

## 3

If a function $y=f(x)$ is satisfies $f^{\prime}(x)>1$ for all $x$, is the inverse function $f^{-1}(y)$ increasing or decreasing for all $x$ ? Justify your answer.

## 4

Using logarithmic differentiation, compute the derivative of the function:

$$
y=x^{x} e^{x}
$$

## 5

If $y=\arctan \left(x^{2}+3 x\right)$, find the horizontal asymptotes of $\frac{d y}{d x}$. Are there any vertical asymptotes? Justify your answer.

## Answer Key

1. (i) $f^{\prime}(x)=2 x \cos \left(2 x^{2}\right) \quad$ (ii) $g^{\prime}(x)=\frac{e^{\sin (x)} \cos (x)}{\cos ^{2}\left(e^{\sin (x)}\right)}$.
2. $f^{\prime}(1)=\frac{\ln (b)}{\ln (a)}=\log _{a}(b)$.
3. As $0<\left(f^{-1}\right)^{\prime}(y)<1$, we see that $f^{-1}(y)$ is always increasing.
4. $y^{\prime}=x^{x} e^{x}(\ln (x)+2)$.
5. Horizontal asymptote at $x=0$ and no vertical asymptotes.

## Solutions

1. Using the double angle identity, $f(x)=\frac{1}{2} \sin \left(2 x^{2}\right)$, so that by the chain rule:

$$
f^{\prime}(x)=\frac{1}{2} \cos \left(2 x^{2}\right)(4 x)=2 x \cos \left(2 x^{2}\right)
$$

Using the chain rule, we obtain:

$$
g^{\prime}(x)=\sec ^{2}\left(e^{\sin (x)}\right)\left(e^{\sin (x)}\right)^{\prime}=\sec ^{2}\left(e^{\sin (x)}\right) e^{\sin (x)} \cos (x)=\frac{e^{\sin (x)} \cos (x)}{\cos ^{2}\left(e^{\sin (x)}\right)}
$$

2. We observe that $f(x)=\ln (b) \log _{a}(x)$, so that:

$$
f^{\prime}(x)=\frac{\ln (b)}{x \ln (a)} \quad \Rightarrow \quad f^{\prime}(1)=\frac{\ln (b)}{\ln (a)}=\log _{a}(b)
$$

3. Recall that:

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}
$$

whenever $f^{\prime}(x) \neq 0$, so that if $f^{\prime}(x)>1$, we have that $\left(f^{-1}\right)^{\prime}(y)$ is well-defined for all $y=f(x)$ and satisfies $0<\left(f^{-1}\right)^{\prime}(y)<1$. In particular, it is always positive, so $f^{-1}(y)$ is always increasing.
4. Taking the logarithm of both sides gives:

$$
\ln (y)=\ln \left(x^{x}\right)+\ln \left(e^{x}\right)=x \ln (x)+x
$$

Taking the derivative gives:

$$
\frac{y^{\prime}}{y}=x \cdot \frac{1}{x}+\ln (x)+1=\ln (x)+2
$$

Hence:

$$
y^{\prime}=x^{x} e^{x}(\ln (x)+2)
$$

5. First, using the chain rule, we compute:

$$
\frac{d y}{d x}=\frac{1}{1+\left(x^{2}+3 x\right)^{2}} \cdot\left(x^{2}+3 x\right)^{\prime}=\frac{2 x+3}{1+\left(x^{2}+3 x\right)^{2}}
$$

To find the horizontal asymptotes, we compute:

$$
\lim _{x \rightarrow \pm \infty} \frac{d y}{d x}=\lim _{x \rightarrow \pm \infty} \frac{2 x+3}{1+\left(x^{2}+3 x\right)^{2}}=\lim _{x \rightarrow \pm \infty} \frac{2 x}{x^{4}}=\lim _{x \rightarrow \pm \infty} \frac{2}{x^{3}}=0
$$

Hence, there is only one horizontal asymptote and it is the line $x=0$. There are no vertical asymptotes, since $\left(x^{2}+3 x\right)^{2} \geq 0$ for all $x$ and so in particular $1+\left(x^{2}+3 x\right)^{2} \neq 0$ for any $x$.

