1

Using the definition of the derivative, compute the derivatives of the following functions:

1. $f(x)=2 x+3$.
2. $g(x)=x^{2}+6 x$.

2

Given an example of a function that is continuous everywhere, but not differentiable at the points $x=-1,0,1$.

3

Find the equation of the tangent line to the graph of the function $y=x^{3}+1$ at the point $x=2$.

4

Given an example of a non-linear function whose angle of incline at $x=0$ is 45 degrees.

5

If a particle's position $p(t)$ in meters at time t in seconds is given by the equation $p(t)=(t+2)^{2}+4 t$, find it's acceleration at time $t=1$. Is its acceleration constant or nonconstant?

Answer Key

1. (i) $f^{\prime}(x)=2 \quad$ (ii) $g^{\prime}(x)=2 x+6$.
2. Different functions would suffices. One is:

$$
f(x)= \begin{cases}|x+1| & x \leq 0 \\ |x-1| & x \geq 0\end{cases}
$$

3. $y=12 x-15$.
4. Different functions would suffice. One is $f(x)=x^{2}+\frac{\sqrt{2}}{2} x$.
5. Acceleration is constantly $2 \mathrm{~ms}^{-2}$.

Solutions

1. Using the definition of the derivative, we compute:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)+3-(2 x+3)}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2
$$

Using the definition of the derivative, we compute:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+6(x+h)-\left(x^{2}+6 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+6 x+6 h-x^{2}-6 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+6+h)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+6+h) \\
& =2 x+6
\end{aligned}
$$

The technique here was the expand, cancel terms, and then factor out h so that the denominator could be cancelled and the limit could be calculated.
2. We know the absolute value function $|x|$ is everywhere continuous, but is not differentiable at the point $x=0$. Hence, the shifted absolute value function $|x-1|$ is not differentiable at the point $x=1$ and the shifted absolute value function $|x+1|$ is not differentiable at the point $x=-1$. This inspires the definition of a piecewise function:

$$
f(x)= \begin{cases}|x+1| & x \leq 0 \\ |x-1| & x \geq 0\end{cases}
$$

This function is still everywhere continuous (indeed, $|0+1|=1=|0-1|$, so we have continuity at 0 still, the point at which the two absolute value functions are being "glued together"). It is not differentiable at the points $x= \pm 1$. It is also not differentiable at the point $x=0$, since:

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h-1|-1}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h-1|}{h}=\lim _{h \rightarrow 0^{+}} \frac{1-h}{h}=-1
$$

while:

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h+1|-1}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h+1|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h+1}{h}=1
$$

so the limit:

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
$$

does not exist and therefore f is not differentiable at $x=0$.
3. The derivative is the slope of the tangent line to the curve, so we compute that first:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}+1-\left(x^{3}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 h x^{2}+3 h^{2} x+h^{3}+1-x^{3}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 h x+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 h x+h^{2}\right) \\
& =3 x^{2}
\end{aligned}
$$

In particular, the slope of the tangent line to the given curve at the point $x=2$ is $f^{\prime}(2)=3(2)^{2}=12$. The equation of the tangent line is then given by:

$$
y-f(2)=12(x-2) \Rightarrow y-9=12(x-2) \Rightarrow y=12 x-15
$$

4. We want a function $f(x)$ such that $f^{\prime}(0)=\arctan (\pi / 4)=\sqrt{2} / 2$. Hence, we can take for instance the function $f(x)=x^{2}+\frac{\sqrt{2}}{2} x$. Then, a similar computation to $1(i i)$, shows that $f^{\prime}(0)=2(0)+\sqrt{2} / 2=\sqrt{2} / 2$.
5. Acceleration is the second derivative of position. The first derivative is velocity:

$$
\begin{aligned}
p^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{p(t+h)-p(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(t+h+2)^{2}+4(t+h)-\left((t+2)^{2}+4 t\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}+2(h+2) t+(h+2)^{2}+4 t+4 h-\left(t^{2}+8 t+4\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h t+8 t+h^{2}+8 h+4-8 t-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 t+8+h)}{h} \\
& =\lim _{h \rightarrow 0}(2 t+8+h) \\
& =2 t+8
\end{aligned}
$$

The derivative of $p^{\prime}(t)$ is $p^{\prime \prime}(t)$, the acceleration of the particle, and that is then immediately seen to be $p^{\prime \prime}(t)=2$. Hence, the acceleration of the particle is constant (the jerk is 0).

