## 1

Calculate the following limits:

1. $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+2}{2 x^{2}+1}$
2. $\lim _{x \rightarrow-\infty} e^{x-3}$

## 2

Calculate the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\cos (x+2)+x^{3}}{x^{3}+1}
$$

## 3

Find the vertical asymptotes of the graph of the function:

$$
g(x)=\frac{\tan (x)}{x+1}
$$

4
Find all vertical, horizontal, and oblique asymptotes of the graph of the function:

$$
h(x)=\frac{3 x^{4}+2 x+1}{x^{2}}
$$

## 5

Find all vertical, horizontal, and oblique asymptotes of the graph of the function:

$$
f(x)=\frac{x^{5}+3 x^{2}+2}{2 x^{4}}
$$

## Answer Key

1. (i) $1 / 2$ (ii) 0 .
2. 3. 
1. $x=1$ and $x=(2 k+1) \pi / 2$ for all integers $k$.
2. Vertical asymptote at $x=0$; no horizontal asymptotes; no oblique asymptotes.
3. Vertical asymptote at $x=0$; no horizontal asymptotes; oblique asymptote given by $y=x / 2$.

## Solutions

1. Only the coefficients of the leading terms matter, so that:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+2}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
$$

In the second case, we observe by a graph or by testing values that $e^{x-3}$ is monotonically decreasing as $x \rightarrow-\infty$ and bounded below by 0 (indeed, $e^{x-3}>0$ for all $x$ ), so that $\lim _{x \rightarrow-\infty} e^{x-3}=0$.
2. We use the Squeeze Theorem. Since $-1 \leq \cos (x+2) \leq 1$, we have:

$$
x^{3}-1 \leq \cos (x+2)+x^{3} \leq x^{3}+1
$$

so that:

$$
\frac{x^{3}-1}{x^{3}+1} \leq \frac{\cos (x+2)+x^{3}}{x^{3}+1} \leq 1
$$

Looking at leading terms, we compute:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-1}{x^{3}+1}=\lim _{x \rightarrow \infty} \frac{x^{3}}{x^{3}}=\lim _{x \rightarrow \infty} 1=1
$$

and so by the Squeeze Theorem, we have:

$$
\lim _{x \rightarrow \infty} \frac{\cos (x+2)+x^{3}}{x^{3}+1}=1
$$

3. We must determine the values $x^{\prime}$ of $x$ for which $\lim _{x \rightarrow x^{\prime}} g(x)= \pm \infty$. First, using the definition of $\tan (x)$, we write:

$$
g(x)=\frac{\sin (x)}{\cos (x)(x+1)}
$$

This makes it clear that the denominator "blows upäs $x \rightarrow-1$, since $-1+1=0$ and as $x \rightarrow(2 k+1) \pi / 2$ for any integer $k$, since $\cos ((2 k+1) \pi / 2)=0$. Since $\sin (1) \neq 0$ and $\sin ((2 k+1) \pi / 2)= \pm 1$ for all integers $k$, we see that the limit of $g(x)$ as $x$ approaches any of these values is indeed $\pm \infty$. Away from these points, $g(x)$ is bounded, and so these are the vertical asymptotes of $g(x)$.
4. The vertical asymptote will be at 0 , since the numerator evaluates to a finite value while the denominator goes to 0 . To check for horizontal asymptotes, we compute:

$$
\lim _{x \rightarrow \pm \infty} h(x)=\lim _{x \rightarrow \pm \infty} \frac{3 x^{4}}{x^{2}}=\lim _{x \rightarrow \pm \infty} 3 x^{2}=\infty
$$

which is not a finite value: hence, there are no horizontal asymptotes. To check for oblique asymptotes to the graph, we compute:

$$
\lim _{x \rightarrow \infty} \frac{h(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{3 x^{4}}{x^{3}}=\lim _{x \rightarrow \infty} 3 x=\infty
$$

so again there are no oblique asymptotes (the power in the denominator is too far below the power in the numerator)!
5. The numerator is finite at $x=0$, but the denominator is 0 , so there is again a vertical asymptote at $x=0$. There is no horizontal asymptote, since:

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x^{5}}{2 x^{4}}=\lim _{x \rightarrow \pm \infty} \frac{x}{2}= \pm \infty
$$

There is, however, an oblique asymptote, since:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x^{5}+3 x^{2}+2}{2 x^{5}}=\lim _{x \rightarrow \pm \infty} \frac{x^{5}}{2 x^{5}}=\lim _{x \rightarrow \pm \infty} \frac{1}{2}=\frac{1}{2}
$$

This is the slope $m$ of the oblique asymptote, and the value $b$ for the line $y=m x+b$ that describes the oblique asymptote is given by:

$$
b=\lim _{x \rightarrow \infty}(f(x)-m x)=\lim _{x \rightarrow \infty} \frac{x^{5}+3 x^{2}+2-x^{5}}{2 x^{4}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}+2}{2 x^{4}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{4}}=\lim _{x \rightarrow \infty} \frac{3}{x^{2}}=0
$$

Thus, the equation of the line of the oblique asymptote is $y=\frac{1}{2} x$.

