1

Calculate the following limits:

1. $\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{2 x+2}$
2. $\lim _{x \rightarrow-1+}|x|$

2

Find a value of c that makes the following function continuous:

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+c & x \leq-2 \\
e^{x}+c x & x>-2
\end{array}\right.
$$

3

Determine the intervals of continuity of the following function:

$$
y=\frac{\cos (x+\pi)}{\sin (x)}
$$

4

Compute the following limit:

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x^{2}+1}-1}{\sqrt{x}}
$$

5

Given that:

$$
\lim _{x \rightarrow 0} \frac{x^{3}}{e^{x}-1}=0
$$

calculate the following limit:

$$
\lim _{x \rightarrow 0} \frac{x^{3} \cos \left(\pi x^{2}\right)}{e^{x}-1}
$$

Answer Key

1. (i) 0 (ii) 1 .
2. $c=\left(e^{-2}-4\right) / 3$.
3. $(\pi k, \pi(k+1))$ for all integers k.
4. 0 .
5. 0 .

Solutions

1. We cannot compute the limit by directly plugging in values, as we would obtain the indeterminate form $0 / 0$. However, factoring the denominator, we see that:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{2 x+2}=\lim _{x \rightarrow-1} \frac{(x+1)^{2}}{2(x+1)}=\lim _{x \rightarrow-1} \frac{x+1}{2}=0
$$

The function $f(x)=|x|$ is continuous, so in particular:

$$
\lim _{x \rightarrow-1^{+}}|x|=\lim _{x \rightarrow-1}|x|=|-1|=1
$$

2. This function is defined piecewise and is continuous whenever $x \neq-2$. To obtain continuity at $x=-2$, we must require that the left and right limits agree, so that:

$$
4+c=(-2)^{2}+c=\lim _{x \rightarrow-2}\left(x^{2}+c\right)=\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2}\left(e^{x}+c x\right)=e^{-2}-2 c
$$

Hence, we require a value of c such that:

$$
4+c=e^{-2}-2 c \quad \Rightarrow 3 c=e^{-2}-4
$$

So that the value $c=\left(e^{-2}-4\right) / 3$ does the trick.
3. The given function is discontinuous whenever $\sin (x)=0$, which is precisely when $x=\pi k$ for some integer k (at such points, the given function $y=y(x)$ has a vertical asymptote). Hence, the intervals of continuity take the form $(\pi k, \pi(k+1))$ for all integers k.
4. We cannot compute the limit by directly plugging in values, as we would obtain the indeterminate form $0 / 0$. However, we can rationalize by multiplying by a conjugate:
$\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x^{2}+1}-1}{\sqrt{x}}=\lim _{x \rightarrow 0^{+}} \frac{\left(\sqrt{x^{2}+1}-1\right) \cdot\left(\sqrt{x^{2}+1}+1\right)}{\sqrt{x} \cdot\left(\sqrt{x^{2}+1}+1\right)}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+1-1}{\sqrt{x} \cdot\left(\sqrt{x^{2}+1}+1\right)}=\lim _{x \rightarrow 0^{+}} \frac{x^{3 / 2}}{\sqrt{x^{2}+1}+1}=0$
5. The key is to use the Squeeze Theorem. We observe that:

$$
-1 \leq \cos \left(\pi x^{2}\right) \leq 1
$$

so that:

$$
-x^{3} \leq x^{3} \cos \left(\pi x^{2}\right) \leq x^{3}
$$

and hence:

$$
\frac{-x^{3}}{e^{x}-1} \leq x^{3} \cos \left(\pi x^{2}\right) \leq \frac{x^{3}}{e^{x}-1}
$$

We claim that:

$$
\lim _{x \rightarrow 0} \frac{-x^{3}}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{x^{3}}{e^{x}-1}=0
$$

so that:

$$
\lim _{x \rightarrow 0} \frac{x^{3} \cos \left(\pi x^{2}\right)}{e^{x}-1}=0
$$

by the Squeeze Theorem. To prove the claim, we use the hint.

