1

Find the coordinates of the vertex and write the equation of the axis of symmetry for the parabola:

$$
y=2 x^{2}+4 x+1
$$

2

Without using any technological assistants, draw by hand a graph of the function $f(x)=2 \sin (x-1)$, marking the x-intercepts and the maximum and minimum values.

3

Define an inverse function to the function $f:[0, \infty) \rightarrow[0, \infty)$ given by $f(x)=x^{2}$. Does the function $g:[0, \infty) \rightarrow \mathbb{R}$ given by $g(x)=x^{2}$ have an inverse?

4

Let $f(x)=a x+b$, for real numbers a and b, where $a \neq 0, \pm 1$. Find the coordinates of the unique point (x, y) at which the lines $f(x)$ and $f^{-1}(x)$ intersect.

5

Consider the functions $f(x)=\ln (2 x-1)$ and $g(x)=\ln \left(x^{2}\right)$. At what values of x do the graphs of these two functions intersect?

Answer Key

1. Vertex: $(-1,1)$. Axis of Symmetry: $x=-1$.
2. Picture below.
3. $f^{-1}(x)=\sqrt{x}$ while $g(x)$ has no inverse.
4. $\left(\frac{b}{1-a}, \frac{b}{1-a}\right)$.
5. $x=1$.

Solutions

1. The x-coordinate of the vertex is given by $x=-b / 2 a=-4 / 4=-1$. The y-coordinate is $2(-1)^{2}+4(-1)+1=$ $2-4+1=-1$. Hence, the vertex has coordinates $(-1,1)$ and the axis of symmetry is the vertical line given by the equation $x=-1$.
2. This is a shifted (by a factor of 1 to the right) and dilated (by a factor of 2) periodic function with period 2π. To draw this, we draw the regular sine function, but now with maximum and miminum values ± 2, respectively, and x-intercepts at $\pi k+1$ for all integers k.

3. The function f has an inverse $f^{-1}:[0, \infty) \rightarrow[0, \infty)$ given by $f^{-1}(x)=\sqrt{x}$, since $\left(f \circ f^{-1}\right)(x)=(\sqrt{x})^{2}=x$ and $\left(f^{-1} \circ f\right)(x)=\sqrt{x^{2}}=x$. However, the function g does not have an inverse, because the square root function is not well-defined on the whole domain \mathbb{R}, but g^{-1}, if it existed, would have to be a map $g^{-1}: \mathbb{R} \rightarrow[0, \infty)$.
4. The line $f^{-1}(x)$ is given by $f^{-1}(x)=\frac{1}{a}(x-b)$, which is well-defined because $a \neq 0$. A direct computation shows $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$, so f^{-1} is indeed the inverse of f. To find where these two lines intersect, we must solve the equation:

$$
a x+b=\frac{1}{a}(x-b)
$$

Rearranging, we see that $a^{2} x+a b=x-b$, so $\left(a^{2}-1\right) x=-b(1+a)$, and therefore we have:

$$
x=\frac{-b(1+a)}{a^{2}-1}=\frac{-b(1+a)}{-(1+a)(1-a)}=\frac{b}{1-a}
$$

which is well-defined because $a \neq \pm 1$, by hypothesis. Now:

$$
f\left(\frac{b}{1-a}\right)=\frac{a b}{1-a}+b=\frac{a b+b(1-a)}{1-a}=\frac{b}{1-a}
$$

Therefore, the point of intersection is given by:

$$
\left(\frac{b}{1-a}, \frac{b}{1-a}\right)
$$

Note that we know a priori by symmetry that this point of intersection (x, y) will satisfy $(x, y)=(y, x)$, so we did not actually have to calculate $f\left(\frac{b}{1-a}\right)$.
5. We want to find solutions to the equation $\ln (2 x-1)=\ln \left(x^{2}\right)$. Exponentiating, we see that:

$$
2 x-1=e^{\ln (2 x-1)}=e^{\ln \left(x^{2}\right)}=x^{2} \quad \Rightarrow \quad x^{2}-2 x+1=0
$$

Factoring gives $x^{2}-2 x+1=(x-1)^{2}=0$, so that $f(x)=g(x)$ only when $x=1$.

