Lecture 29

Riemann Sums. Part 1

Objectives
The definite integral as a signed area
The area problem
Curvilinear trapezoids
Riemann sums
Riemann sums for small numbers of rectangles
Approximation by two rectangles
Approximation by n rectangles
Construction of Riemann sums: subintervals
Construction of Riemann sums: left rectangles
Construction of Riemann sums: right rectangles
When the integral is squeezed between Riemann sums
The integral is the limit of Riemann sums
Summary
Comprehension checkpoint

Objectives In this lecture we will discuss an approach to the definite integral as the limit of Riemann sums. Bernhard Riemann (1826-1866) 2 / 16

The *definite integral* of a piece-wise continuous function was defined as the **signed area** of the region bounded by the graph of f, the x-axis, and the lines x = a, x = b. The area above the x-axis adds to the total, the area below the x-axis subtracts from the total.

To calculate the integrals, we have to be able to calculate the areas.

 $\dot{y} = f(x)$

So far, we did this only for very simple functions,

The definite integral as a signed area

where the area can be calculated by tools from elementary geometry.

How do we calculate the area for more general functions?

Riemann sums

An expression of type $\sum_{i} f(x_{i}^{*})\Delta x_{i}$ is called a *Riemann sum* for the integral $\int_{a}^{b} f(x) dx$. **Remarks.** 1. The larger the number n of rectangles, the better the approximation $\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_{i}^{*})\Delta x_{i}$ 2. Δx_{i} are the bases of the rectangles, $x_{i}^{*} \in \Delta x_{i}$ are arbitrary points: $\Delta x_{i} \rightarrow x_{2}^{*} \rightarrow x_{i}^{*} \rightarrow x_{i}^{*} \rightarrow x_{i}^{*} \rightarrow x_{n}^{*} \rightarrow b$

The integral is the limit of Riemann sums

One can prove that both limits $\lim_{n\to\infty} L_n$ and $\lim_{n\to\infty} R_n$ exist, and, since for an increasing function we have $L_n \leq \int_a^b f(x) \, dx \leq R_n$, the Squeeze theorem guarantees that in this case $\int_a^b f(x) \, dx = \lim_{n\to\infty} L_n = \lim_{n\to\infty} R_n$. One can prove that the same holds true for **any** function bounded on [a, b]: $\int_a^b f(x) \, dx = \lim_{n\to\infty} L_n = \lim_{n\to\infty} R_n$, where L_n and R_n are left and right Riemann sums. In a similar way one can construct a general Riemann sum R(f, n)for any function f that is bounded on the interval [a, b]by subdividing the interval into n subintervals Δx_i of **arbitrary** lengths, and choosing **arbitrary** points $x_i^* \in \Delta x_i$. In this case, as long as $\max \Delta x_i \to 0$, the limit still exists and is equal to the integral: $\int_a^b f(x) \, dx = \lim_{\substack{n\to\infty\\max\Delta x_i \to 0}} R(f, n)$

14 / 16

Summary

- In this lecture we learned
- how to express a definite integral as the limit of Riemann sum.
- how to approximate a definite integral by Riemann sums.

Comprehension checkpoint

• Approximate the integral $\int_{-2}^{2} (x+1) dx$ by the Riemann sums L_4 and R_4 . Give geometric interpretations to these Riemann sums. What is the exact value of the integral? Present the integral as the limit of R_n .