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Objectives

In this lecture we will discuss an approach to the definite integral as the limit of Riemann sums.

Bernhard Riemann (1826-1866)

2 / 16

The definite integral as a signed area

The definite integral of a piece-wise continuous function was defined as
the signed area of the region bounded by
the graph of f , the x -axis, and the lines x = a, x = b .
The area above the x -axis adds to the total, the area below the x -axis subtracts from the total.

x

y

y = f(x)

a b x

y

y = f(x)

a b

A1

A2

A3

∫ b

a

f(x)dx = A1 −A2 +A3

To calculate the integrals, we have to be able to calculate the areas.

So far, we did this only for very simple functions,
where the area can be calculated by tools from elementary geometry.

How do we calculate the area for more general functions?
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The area problem

Problem. Given a piece-wise continuous function f(x) and numbers a, b .

x

y

a b

A =?

y = f(x)

How to calculate A =

∫ b

a

f(x)dx (the signed area)?

∫ b

a

f(x)dx is the sum of the areas of thin curvilinear trapezoids:

x

y

a b

y = f(x)

Area=?

4 / 16

Curvilinear trapezoids

How to calculate the area of a curvilinear trapezoid?

x∗

f(x∗)

Its area can be approximated by the area of a rectangle
with the same base and height f(x∗) ,

where x∗ is an arbitrary point in the base.

x

y

a b

y = f(x)

x∗

i

b∫

a

f(x) dx ≈
∑

i

f(x∗i )
︸ ︷︷ ︸

height

∆xi
︸︷︷︸

base
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Riemann sums

An expression of type
∑

i

f(x∗i )∆xi is called a Riemann sum for the integral

b∫

a

f(x) dx .

Remarks.

1. The larger the number n of rectangles, the better the approximation
b∫

a

f(x) dx ≈

n∑

i=1

f(x∗i )∆xi

2. ∆xi are the bases of the rectangles, x∗i ∈ ∆xi are arbitrary points:

a bx∗1 x∗2 x∗nx∗i

∆x1
∆x2 ∆xn∆xi
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Riemann sums for small numbers of rectangles

Let us see how the integral is approximated by Riemann sums with a small number of rectangles.
By one rectangle:

x

y

a b

y = f(x)

L1

R1

M1

A ≈ L1, the base point x∗

1
is the left end point of [a, b]

A ≈ R1, the base point x∗

1
is the right end point of [a, b]

A ≈ M1, the base point x∗

1
is the middle point of [a, b]

Since the function in this example is increasing, we have L1 ≤ A ≤ R1

It’s not a good approximation, but a good start!
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Approximation by two rectangles

We approximate area under the graph by two rectangles:

x

y

a b

y = f(x)

L2

R2

A ≈ L2

A ≈ R2

A ≈ M2

L1 ≤ L2 ≤ A ≤ R2 ≤ R1

for an increasing function f

One can increase the number of approximating rectangles:

x

y

a b

y = f(x)

L4

R4

A ≈ L4

A ≈ R4

A ≈ M4

L1 ≤ L2 ≤ L3 ≤ L4 ≤ A ≤ R4 ≤ R3 ≤ R2 ≤ R1

for an increasing function f

The larger the number of rectangles, the better the approximation!
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Approximation by n rectangles

x

y

Ln

Rn

Ln is the sum of the areas of left rectangles

Rn is the sum of the areas of right rectangles

For an increasing f, we have

L1 ≤ · · · ≤ Ln ≤ A ≤ Rn · · · ≤ R1

A

n → ∞n → ∞

∫ b

a

f(x)dx = A = lim
n→∞

Ln = lim
n→∞

Rn = lim
n→∞

Mn

Riemann sums

9 / 16

5



Construction of Riemann sums: subintervals

Let us formalize the idea of calculation of the definite integral as the limit of special sums.
Let f(x) be a piecewise continuous function (not necessarily positive) on the interval [a, b] .
Fix a positive integer n and subdivide [a, b] into n equal parts:

a b

=

x0

=

xn

x1 x2 xn−1xi xi+1

∆x ∆x ∆x∆x

Call the points of the subdivision x0, x1, x2, . . . , xn−1, xn .

The interval [a, b] is subdivided into n intervals of the same length ∆x =
b− a

n
.

The coordinates xi can be expressed in terms of a, b and n :

xi = x0 + i∆x = a+ i
b− a

n
for each i = 0, 1, . . . , n .
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Construction of Riemann sums: left rectangles

From each xi , draw the vertical segment from the x -axis to the graph:

x

y

a = x0 xn = bx1 x2 xn−1xi xi+1

y = f(x)

f(x0)

f(xi)

f(xi+1)

f(xn−1)

Over each subinterval [xi, xi+1] , construct a rectangle of height f(xi) ,
the value of the function at the left endpoint of the subinterval.

The left Riemann sum is

Ln = f(x0)∆x+ f(x1)∆x+ · · ·+ f(xn−1)∆x =
n−1∑

i=0
f(xi)∆x

If f(x) ≥ 0 , then Ln is the area of a polygon approximating the area under the graph.
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Construction of Riemann sums: right rectangles

The right Riemann sum is constructed in a similar way:

x

y

a = x0 xn = bx1 x2 xn−1xi xi+1

y = f(x)

f(x1)

f(xi)

f(xi+1)

f(xn−1)

f(xn)

Over each subinterval [xi, xi+1] , construct a rectangle of height f(xi+1) ,
the value of the function at the right endpoint of the subinterval.

The right Riemann sum is Rn = f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x =
n∑

i=1
f(xi)∆x.
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When the integral is squeezed between Riemann sums

For an increasing function, like the one in our picture,
the area under the graph is squeezed between the polygonal areas:

Ln ≤

b∫

a

f(x) dx ≤ Rn

Notice that Rn − Ln = (f(b)− f(a))∆x = (f(b)− f(a))
b− a

n
−→
n→∞

0 :

x

y

a b

y = f(x)
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The integral is the limit of Riemann sums

One can prove that both limits lim
n→∞

Ln and lim
n→∞

Rn exist, and, since for an increasing function we have

Ln ≤

b∫

a

f(x) dx ≤ Rn ,

the Squeeze theorem guarantees that in this case

b∫

a

f(x) dx = lim
n→∞

Ln = lim
n→∞

Rn.

One can prove that the same holds true for any function bounded on [a, b] :
b∫

a

f(x) dx = lim
n→∞

Ln = lim
n→∞

Rn, where Ln and Rn are left and right Riemann sums.

In a similar way one can construct a general Riemann sum R(f, n)
for any function f that is bounded on the interval [a, b]
by subdividing the interval into n subintervals ∆xi of arbitrary lengths, and choosing arbitrary points
x∗

i
∈ ∆xi . In this case, as long as max∆xi → 0,

the limit still exists and is equal to the integral:

b∫

a

f(x) dx = lim
n → ∞

max∆xi → 0

R(f, n)
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Summary

In this lecture we learned

• how to express a definite integral as the limit of Riemann sum.

• how to approximate a definite integral by Riemann sums.
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Comprehension checkpoint

• Approximate the integral

2∫

−2

(x+ 1) dx by the Riemann sumsL4 and R4 .

Give geometric interpretations to these Riemann sums.

What is the exact value of the integral?

Present the integral as the limit of Rn.
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