Riemann Sums. Part 1

Objectives 2
The definite integral as a signed area 3
The area problem 4
Curvilinear trapezoids 5
Riemann sums 6
Riemann sums for small numbers of rectangles 7
Approximation by two rectangles 8
Approximation by \boldsymbol{n} rectangles 9
Construction of Riemann sums: subintervals 10
Construction of Riemann sums: left rectangles 11
Construction of Riemann sums: right rectangles 12
When the integral is squeezed between Riemann sums 13
The integral is the limit of Riemann sums 14
Summary 15
Comprehension checkpoint 16

Objectives

In this lecture we will discuss an approach to the definite integral as the limit of Riemann sums.

Bernhard Riemann (1826-1866)

The definite integral as a signed area

The definite integral of a piece-wise continuous function was defined as
the signed area of the region bounded by
the graph of f, the x-axis, and the lines $x=a, x=b$.
The area above the x-axis adds to the total, the area below the x-axis subtracts from the total.

$$
\int_{a}^{b} f(x) d x=A_{1}-A_{2}+A_{3}
$$

To calculate the integrals, we have to be able to calculate the areas.
So far, we did this only for very simple functions,
where the area can be calculated by tools from elementary geometry.
How do we calculate the area for more general functions?

The area problem

Problem. Given a piece-wise continuous function $f(x)$ and numbers a, b.

How to calculate $A=\int_{a}^{b} f(x) d x$ (the signed area)?
$\int_{a}^{b} f(x) d x$ is the sum of the areas of thin curvilinear trapezoids:

Curvilinear trapezoids

How to calculate the area of a curvilinear trapezoid?

Its area can be approximated by the area of a rectangle with the same base and height $f\left(x^{*}\right)$,
where x^{*} is an arbitrary point in the base.

$$
\int_{a}^{b} f(x) d x \approx \sum_{i} \underbrace{f\left(x_{i}^{*}\right)}_{\text {height }} \underbrace{\Delta x_{i}}_{\text {base }}
$$

Riemann sums

An expression of type $\sum_{i} f\left(x_{i}^{*}\right) \Delta x_{i}$ is called a Riemann sum for the integral $\int_{a}^{b} f(x) d x$.

Remarks.

1. The larger the number n of rectangles, the better the approximation

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

2. Δx_{i} are the bases of the rectangles, $x_{i}^{*} \in \Delta x_{i}$ are arbitrary points:

Riemann sums for small numbers of rectangles

Let us see how the integral is approximated by Riemann sums with a small number of rectangles.
By one rectangle:

$A \approx L_{1}$, the base point x_{1}^{*} is the left end point of $[a, b]$
$A \approx R_{1}$, the base point x_{1}^{*} is the right end point of $[a, b]$
$A \approx M_{1}$, the base point x_{1}^{*} is the middle point of $[a, b]$

Since the function in this example is increasing, we have $L_{1} \leq A \leq R_{1}$
It's not a good approximation, but a good start!

Approximation by two rectangles

We approximate area under the graph by two rectangles:

$A \approx L_{2}$
$A \approx R_{2}$
$A \approx M_{2}$
$L_{1} \leq L_{2} \leq A \leq R_{2} \leq R_{1}$
for an increasing function f
One can increase the number of approximating rectangles:

$A \approx L_{4}$
$A \approx R_{4}$
$A \approx M_{4}$
$L_{1} \leq L_{2} \leq L_{3} \leq L_{4} \leq A \leq R_{4} \leq R_{3} \leq R_{2} \leq R_{1}$
for an increasing function f
The larger the number of rectangles, the better the approximation!

Approximation by n rectangles

L_{n} is the sum of the areas of left rectangles
R_{n} is the sum of the areas of right rectangles

For an increasing f, we have

$$
\begin{aligned}
L_{1} \leq \cdots \leq L_{n} \leq A \leq R_{n} \cdots \leq R_{1} \\
n \rightarrow \infty
\end{aligned}
$$

$$
\left.\left.\int_{a}^{b} f(x) d x=A=\lim _{n \rightarrow \infty} L_{n}\right)=\lim _{n \rightarrow \infty} \bigcap_{n}\right)=\lim _{n \rightarrow \infty} M_{n}
$$

Construction of Riemann sums: subintervals

Let us formalize the idea of calculation of the definite integral as the limit of special sums.
Let $f(x)$ be a piecewise continuous function (not necessarily positive) on the interval $[a, b]$.
Fix a positive integer n and subdivide $[a, b]$ into n equal parts:

Call the points of the subdivision $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$.
The interval $[a, b]$ is subdivided into n intervals of the same length $\Delta x=\frac{b-a}{n}$.
The coordinates x_{i} can be expressed in terms of a, b and n :
$x_{i}=x_{0}+i \Delta x=a+i \frac{b-a}{n} \quad$ for each $i=0,1, \ldots, n$.

Construction of Riemann sums: left rectangles

From each x_{i}, draw the vertical segment from the x-axis to the graph:

Over each subinterval $\left[x_{i}, x_{i+1}\right]$, construct a rectangle of height $f\left(x_{i}\right)$, the value of the function at the left endpoint of the subinterval.
The left Riemann sum is
$L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x=\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x$
If $f(x) \geq 0$, then L_{n} is the area of a polygon approximating the area under the graph.

Construction of Riemann sums: right rectangles

The right Riemann sum is constructed in a similar way:

Over each subinterval $\left[x_{i}, x_{i+1}\right]$, construct a rectangle of height $f\left(x_{i+1}\right)$, the value of the function at the right endpoint of the subinterval.
The right Riemann sum is $R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$.

When the integral is squeezed between Riemann sums

For an increasing function, like the one in our picture,
the area under the graph is squeezed between the polygonal areas:

$$
L_{n} \leq \int_{a}^{b} f(x) d x \leq R_{n}
$$

Notice that $R_{n}-L_{n}=(f(b)-f(a)) \Delta x=(f(b)-f(a)) \frac{b-a}{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$:

The integral is the limit of Riemann sums

One can prove that both limits $\lim _{n \rightarrow \infty} L_{n}$ and $\lim _{n \rightarrow \infty} R_{n}$ exist, and, since for an increasing function we have $L_{n} \leq \int_{a}^{b} f(x) d x \leq R_{n}$,
the Squeeze theorem guarantees that in this case $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} R_{n}$.
One can prove that the same holds true for any function bounded on $[a, b]$:
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} R_{n}$, where L_{n} and R_{n} are left and right Riemann sums.
a
In a similar way one can construct a general Riemann sum $R(f, n)$
for any function f that is bounded on the interval $[a, b]$
by subdividing the interval into n subintervals Δx_{i} of arbitrary lengths, and choosing arbitrary points $x_{i}^{*} \in \Delta x_{i}$. In this case, as long as $\max \Delta x_{i} \rightarrow 0$,
the limit still exists and is equal to the integral: $\int_{a}^{b} f(x) d x=\underset{\substack{n \rightarrow \rightarrow \infty \\ \max \Delta x_{i} \rightarrow 0}}{\lim _{\infty}} R(f, n)$

Summary

In this lecture we learned

- how to express a definite integral as the limit of Riemann sum.
- how to approximate a definite integral by Riemann sums.

Comprehension checkpoint

- Approximate the integral $\int_{-2}^{2}(x+1) d x$ by the Riemann sums L_{4} and R_{4}.

Give geometric interpretations to these Riemann sums.
What is the exact value of the integral?
Present the integral as the limit of R_{n}.

