Areas of Plane Figures

Objectives 2
Indefinite and definite integrals 3
The definite integral 4
The axioms of area 5
How to calculate the area of a figure 6
The area of a disk: idea of calculation 7
The area of a disk: inscribed and circumscribed polygons 8
The area of a disk: calculation 9
Summary/Comprehension checkpoint 10

Objectives

This lecture opens our next topic, the definite integral.
Today we discuss what the area of a plane figure is and how to calculate the area of a disc using the axioms of area.
$2 / 10$

Indefinite and definite integrals

In calculus, there are two kinds of integrals: indefinite and definite:

The indefinite and definite integrals are related by the Fundamental Theorem of Calculus.
ne Don't confuse indefinite and definite integrals!

The definite integral

The notion of the definite integral can be explained using the idea of the area of a plane figure.
What is the area and how do we calculate it?
Area possesses a few remarkable properties which entirely determine it.
To each plane figure, we associate a real number, called its area, which satisfies several properties called the axioms of area.

The axioms of area

1. Monotonicity:

$$
A \subseteq B \Longrightarrow \operatorname{Area}(A) \leq \operatorname{Area}(B)
$$

2. Additivity: if A, B have no inner points in common, then

$$
\operatorname{Area}(A \cup B)=\operatorname{Area}(A)+\operatorname{Area}(B)
$$

3. Invariance: if A is congruent to B, then

4. Normalization:

Area $\left(1 \square_{1}^{\square}\right)=1$ square unit

How to calculate the area of a figure

Axioms 1 and 2 ensure that the area of any figure is non-negative.
Indeed, for any A,
$\operatorname{Area}(A)=\operatorname{Area}(A \cup \varnothing)=\operatorname{Area}(A)+\operatorname{Area}(\varnothing) \Longrightarrow \operatorname{Area}(\varnothing)=0$.
$\varnothing \subseteq A \Longrightarrow \underbrace{\operatorname{Area}(\varnothing)}_{0} \leq \operatorname{Area}(A)$. So $\operatorname{Area}(A) \geq 0$.
Exercise. Using Axioms 2-4, find the area of a rectangle, triangle, and parallelogram.
How to calculate the area of more complicated figures?

Area $=$?

Let us calculate the area of a disc of radius R. This calculation will give us a basic idea for area calculations.
Area $=$?

The area of a disk: idea of calculation

Let A be the area of the disk,
I the area of inscribed polygon ,
S the area of circumscribed polygon
By monotonicity, $I \leq A \leq S$.

One can increase the number of sides of the inscribed and circumscribed polygons,
so I will increase and S will decrease.
By this, one can make the difference $S-I$ as small as possible.
The area of the disk is a unique number A such that $I \leq A \leq S$ for any I, S.

408 The area of any plane figure can be calculated in a similar way,
via approximation by the areas of inscribed and circumscribed polygons.

The area of a disk: inscribed and circumscribed polygons

Given a disk of radius R, let us inscribe in it a regular n-gon:

The area of the inscribed polygon is

$$
I=n \cdot \frac{1}{2} R^{2} \sin \frac{2 \pi}{n}
$$

The area of the circumscribed polygon is

$$
S=n \cdot R^{2} \tan \frac{\pi}{n}
$$

The area of a disk: calculation

Since $I \leq A \leq S$, we get
$n \cdot \frac{1}{2} R^{2} \sin \frac{2 \pi}{n} \leq A \leq n \cdot R^{2} \tan \frac{\pi}{n}$ or, equivalently,
$\pi R^{2} \frac{\sin \frac{2 \pi}{n}}{\frac{2 \pi}{n}} \leq A \leq \pi R^{2} \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$
What happens if n (the number of the sides) grows to infinity? Both polygons are getting closer and closer to the disk.
Since $\lim _{n \rightarrow \infty} \frac{\sin \frac{2 \pi}{n}}{\frac{2 \pi}{n}}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, and $\lim _{n \rightarrow \infty} \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
we find as $n \rightarrow \infty$

Therefore, A, the area of a disk of radius R, equals πR^{2}.

Summary/Comprehension checkpoint

In this lecture we have learned four axioms of area.
List these axioms.

