Lecture 21

Implicit Differentiation

Objectives 2
Implicit vs Explicit 3
Equations and functions 4
Functions defined implicitly 5
The slope by implicit differentiation 6
The slope by implicit differentiation 7
Implicit differentiation 8
Tangent line by implicit differentiation 9
Tangent to a circle 10
Tangent to a circle 11
Folium of Descartes 12
Folium of Descartes 13
Second derivative by implicit differentiation 14
Finding maximum and minimum on the curves 15
Second derivative test 16
Hyperbola 17
How to get $d x / d y$? 18
What is $d x / d y$ geometrically? 19
Summary/Comprehension checkpoint 20

Objectives

In this lecture we will learn how an equation in two variables may define a function in one variable.
We will learn how to differentiate such a function,
even if we do not know a formula which defines this function explicitly.
We will learn how to find the equation of a tangent line to a curve which is not the graph of a function.

Implicit vs Explicit

Explicit means expressed clearly, without any ambiguity.
For example: The professor gave explicit instructions for the midterm.
Implicit means not directly expressed, but to be understood.
For example: His speech contained an implicit criticism of the government.
So far, we studied functions $y=f(x)$ given by an explicit formula for f, like $f(x)=x^{2}+x$.
However, there are many situations in which the explicit formula is not known or even does not exist and a function is defined in a more complicated way.

It may happen that the independent variable x and the dependent variable y are related by an equation $F(x, y)=0$ in which x and y are involved equally, like in $x^{2}+y^{2}+x y-1=0$.
Geometrically, the equation $F(x, y)=0$ represents a curve on the $x y$-plane.
For example, $x^{2}+y^{2}+x y-1=0$ represents an ellipse.
This curve is not the graph of a function,
since it fails the vertical line test.
There is no convenient explicit formula for y as a function of x. But for many purposes, the equation $F(x, y)=0$ is most convenient. We just need to learn how to use it.

Equations and functions

Example 1. Consider the equation $x^{2}-y=0$. It defines a parabola:
 The parabola is the graph of a function $y(x)=x^{2}$. We say that the equation $x^{2}-y=0$ defines the function $y(x)=x^{2}$ implicitly, while the equation $y=x^{2}$ defines it explicitly.
The graph of the equation $x^{2}-y=0$ is indeed the graph of a function since it satisfies the conditions of the vertical line test.
Example 2. Consider the equation $x-y^{2}=0$. It also defines a parabola:

The graph of the equation is not a graph of any function, since it fails the vertical line test.
So the equation $x-y^{2}=0$ does not define a single function $y=y(x)$.

Nevertheless, $x-y^{2}=0$ defines two different functions: $y_{1}=\sqrt{x}$ and $y_{2}=-\sqrt{x}$.

Functions defined implicitly

It may be difficult or even impossible to find an explicit formula
for a function $y=y(x)$ defined by the implicit equation $F(x, y)=0$:

$$
F(x, y)=0 \stackrel{?}{\Longrightarrow} y=y(x)
$$

However, many properties of a function $y=y(x)$ defined implicitly by the equation $F(x, y)=0$ can be found without the explicit form for $y=y(x)$.
Example. The equation $x^{2}+y^{2}+x y-1=0$ can't be solved for y in terms of x : there is no function such that the ellipse $x^{2}+y^{2}+x y-1=0$ is the graph of this function.

Choose a point on the ellipse, say $(0,-1)$.
In a neighborhood of this point,
the equation defines implicitly a function $y=y(x)$:
$x^{2}+y^{2}+x y-1=0 \Longrightarrow y=y(x)$.
Its graph lies on the ellipse.
We will find the derivative $\frac{d y}{d x}$ directly from the equation of ellipse without writing down $y(x)$ explicitly.
The derivative will represent the slope of the tangent to the ellipse.

The slope by implicit differentiation

Problem. Find the slope of the tangent line to the ellipse $x^{2}+y^{2}+x y=1$ at the point $(0,-1)$.
Solution. The slope of the tangent line at $(0,-1)$ is $\left.\frac{d y}{d x}\right|_{\substack{x=0 \\ y=-1}}$, where $y=y(x)$ is the function defined by the equation $x^{2}+y^{2}+x y=1$ implicitly.
We find this derivative by implicit differentiation.
Let us rewrite the equation replacing y by $y(x)$:
$x^{2}+y^{2}(x)+x \cdot y(x)=1$. Differentiate this equation with respect to x.
Keep in mind that $y^{2}(x)$ should be differentiated by the chain rule as a composition of two functions:
$x^{2}+y^{2}(x)+x \cdot y(x)=1 \xrightarrow{\frac{d}{d x}} 2 x+2 y(x) \cdot \frac{d y}{d x}+y(x)+x \cdot \frac{d y}{d x}=0$. Or, equivalently,
$2 x+2 y y^{\prime}+y+x y^{\prime}=0$. When $x=0, y=-1$, we get
$2 \cdot 0+2(-1) y^{\prime}+(-1)+0 \cdot y^{\prime}=0 \Longrightarrow y^{\prime}=-1 / 2$.

The slope by implicit differentiation

We have found the derivative of a function without knowing an explicit formula for the function!
The slope of the tangent line to the ellipse $x^{2}+y^{2}+x y=1$
at the point $(0,-1)$ is $\left.\frac{d y}{d x}\right|_{\substack{x=0 \\ y=-1}}=-\frac{1}{2}$.

Implicit differentiation

Problem. Find $\frac{d y}{d x}$ if $x-y^{2}=0$.
Solution. We know that the implicit equation $x-y^{2}=0$ defines two functions, $y_{1}=\sqrt{x}$ and $y_{2}=-\sqrt{x}$. Their derivatives are $\frac{d y_{1}}{d x}=\frac{1}{2 \sqrt{x}}$ and $\frac{d y_{2}}{d x}=-\frac{1}{2 \sqrt{x}}$.
However, we may find $\frac{d y}{d x}$ without solving the equation $x-y^{2}=0$ for y.
Let us rewrite the equation replacing y by $y(x)$:
$x-y^{2}(x)=0$. Differentiate this equation. Keep in mind that $y^{2}(x)$ should be differentiated by the chain rule as a composition of two functions.
$x-y^{2}(x)=0 \xrightarrow{\frac{d}{d x}} 1-2 y \frac{d y}{d x}=0 \Longrightarrow \frac{d y}{d x}=\frac{1}{2 y} \quad \begin{aligned} & \text { Notice that the derivative } \\ & \text { is given in terms of } y\end{aligned}$
This formula agrees with the derivatives
calculated for both of the explicit solutions $y_{1}=\sqrt{x}$ and $y_{2}=-\sqrt{x}$:
$\frac{d y_{1}}{d x}=\frac{1}{2 y_{1}}=\frac{1}{2 \sqrt{x}} \quad$ and $\quad \frac{d y_{2}}{d x}=\frac{1}{2 y_{2}}=-\frac{1}{2 \sqrt{x}}$.

Tangent line by implicit differentiation

Problem. Find the equations of the tangent line to the curve $x-y^{2}=0$ at the point $(1,-1)$.
Solution. The equation of the tangent line to the curve $y=y(x)$
at the point $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.
In our case, $x_{0}=1$ and $y_{0}=-1$. What is $y^{\prime}\left(x_{0}\right)$ then?
By implicit differentiation, $x-y^{2}(x)=0 \Longrightarrow 1-2 y \frac{d y}{d x}=0 \Longrightarrow \frac{d y}{d x}=\frac{1}{2 y}$
Therefore, $y^{\prime}\left(x_{0}\right)=\left.\frac{d y}{d x}\right|_{\substack{x=x_{0} \\ y=y_{0}}}=\left.\frac{1}{2 y}\right|_{\substack{x=1 \\ y=-1}}=-\frac{1}{2}$.
Hence the equation of the tangent line is $y-(-1)=-\frac{1}{2}(x-1) \Longleftrightarrow y=-\frac{1}{2} x-\frac{1}{2}$

Tangent to a circle

Problem. Find the slope of the tangent line to the circle $x^{2}+y^{2}=25$ at the point $(-3,4)$.
Solution. The slope of the tangent at $(-3,4)$ is $\left.\frac{d y}{d x}\right|_{\substack{x=-3 \\ y=4}}$.
The derivative can be found by the implicit differentiation.
Let $y=y(x)$ be a function defined by the equation $x^{2}+y^{2}=25$.
Then $x^{2}+y^{2}(x)=25$.
Differentiate this equation implicitly with respect to x :
$2 x+2 y \frac{d y}{d x}=0 \Longrightarrow \frac{d y}{d x}=-\frac{x}{y}$. So $\left.\frac{d y}{d x}\right|_{\substack{x=-3 \\ y=4}}=-\left.\frac{x}{y}\right|_{\substack{x=-3 \\ y=4}}=-\frac{-3}{4}=\frac{3}{4}$.
Therefore, the slope is $\frac{3}{4}$.

Tangent to a circle

The slope of the tangent line to the circle $x^{2}+y^{2}=25$ at $(-3,4)$ is $3 / 4$.

Control question.

For which points on the circle is the tangent vertical?
As we see from the picture, for $(-5,0)$ and $(5,0)$.
These are the only points where $\frac{d y}{d x}$ is undefined.
Indeed, $\frac{d y}{d x}=-\frac{x}{y}$ and is undefined if $y=0$.

Folium of Descartes

The equation $x^{3}+y^{3}-6 x y=0$ defines a curve on the $x y$-plane.
It is called the folium of Descartes:

The folium of Descartes is symmetric about the line $y=x$.
Let us show that the tangent line to the folium at the point P
is orthogonal (perpendicular) to the line $y=x$.

Folium of Descartes

Solution. We have to show that the slope of the tangent line at P

$$
\text { and the slope of } y=x \text { are negative reciprocals of each other. }
$$

The slope of the tangent can be found by the implicit differentiation of the equation of the folium:
$x^{3}+y^{3}(x)-6 x y(x)=0 \stackrel{\frac{d}{d x}}{\xrightarrow{2}} 3 x^{2}+3 y^{2}(x) \frac{d y}{d x}-6 y(x)-6 x \frac{d y}{d x}=0$, that is
$x^{2}+y^{2} y^{\prime}-2 y-2 x y^{\prime}=0$. From which we get $y^{\prime}=\frac{2 y-x^{2}}{y^{2}-2 x}$.
The point P belongs the line $y=x$, so $y=x$ at P.
Therefore, $\left.y^{\prime}\right|_{P}=\frac{2 x-x^{2}}{x^{2}-2 x}=-1$,
and the slope of the tangent is -1 .
Therefore, the tangent line is perpendicular to $y=x$.

Second derivative by implicit differentiation

Example. Find $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ if $x^{2}+y^{2}=1$.
Solution. Differentiate implicitly the equation $x^{2}+y^{2}=1$ and get
$2 x+2 y y^{\prime}=0$, that is $x+y y^{\prime}=0 .(*)$
Differentiate the obtained equation one more time:
$1+y^{\prime} y^{\prime}+y y^{\prime \prime}=0$, or, equivalently, $1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=0$.
Solve for $y^{\prime \prime}: y^{\prime \prime}=-\frac{1+\left(y^{\prime}\right)^{2}}{y}$. From $(*)$ we get $y^{\prime}=-\frac{x}{y}$.
Therefore, $y^{\prime \prime}=-\frac{1+\left(y^{\prime}\right)^{2}}{y}=-\frac{1+\left(-\frac{x}{y}\right)^{2}}{y}=-\frac{x^{2}+y^{2}}{y^{3}}=-\frac{1}{y^{3}}$, since $x^{2}+y^{2}=1$.
Riddle. How to interpret the obtained result geometrically?

Finding maximum and minimum on the curves

Problem. Find local extrema on the curve $-x^{2}+y^{2}=1$.
Solution. We search for local extema among critical and singular points
of a function $y=y(x)$ defined implicitly by the equation $-x^{2}+y^{2}=1$.
Implicit differentiation gives us
$-x^{2}+y^{2}=1 \xrightarrow{\frac{d}{d x}}-2 x+2 y \frac{d y}{d x}=0 \Longrightarrow \frac{d y}{d x}=\frac{x}{y}$.
Critical points: $\frac{d y}{d x}=\frac{x}{y}=0 \Longleftrightarrow x=0$. In this case, $-0^{2}+y^{2}=1 \Longrightarrow y=1$ or $y=-1$.
Therefore, the critical points are $(0,1)$ and $(0,-1)$.
Singular points: $\frac{d y}{d x}$ doesn't exist $\Longleftrightarrow y=0$. In this case, $-x^{2}+0^{2}=1$.
There are no such x on the curve, therefore there are no singular points.
To classify the critical points $(0,1)$ and $(0,-1)$, we apply the second derivative test.

Second derivative test

After the first implicit differentiation, we have

$$
-x^{2}+y^{2}=1 \xrightarrow{\frac{d}{d x}}-2 x+2 y \frac{d y}{d x}=0 \Longleftrightarrow-x+y y^{\prime}=0 .
$$

Differentiate the latter equation once more:
$-x+y y^{\prime}=0 \stackrel{\frac{d}{d x}}{\longrightarrow}-1+y^{\prime} \cdot y^{\prime}+y \cdot y^{\prime \prime}=0 \Longleftrightarrow-1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=0$.
At a critical point, $y^{\prime}=0$. Therefore, $-1+y y^{\prime \prime}=0$
Calculate $y^{\prime \prime}$ at the critical points $(0,1)$ and $(0,-1)$.
Plug $x=0$ and $y=1$ in $(*):-1+1 \cdot y^{\prime \prime}=\left.0 \Longrightarrow y^{\prime \prime}\right|_{(0,1)}=1>0$.
Therefore, $(0,1)$ is a local minimum.
Plug in $x=0$ and $y=-1$ in $(*):-1-1 \cdot y^{\prime \prime}=\left.0 \Longrightarrow y^{\prime \prime}\right|_{(0,1)}=-1<0$.
Therefore, $(0,-1)$ is a local maximum.

Hyperbola

The curve $-x^{2}+y^{2}=1$ is a hyperbola:

How to get $d x / d y$?
Problem. Show that the point $(1,0)$ belongs to the curve $1+\sin (x y)=x+y$ and find $\frac{d x}{d y}$ at $(1,0)$.
Solution. For $x=1$ and $y=0$ the equation turns into
a true numerical identity: $1+\sin (1 \cdot 0)=1+0 \Longleftrightarrow 1=1 \checkmark$
Therefore, the point $(1,0)$ belongs to the curve.
The equation $1+\sin (x y)=x+y$ defines implicitly a function $x=x(y)$. We have to find the derivative of this function when $x=1$ and $y=0$.
Differentiate $1+\sin (x y)=x+y$ implicitly with respect to y :
$1+\sin (x(y) \cdot y)=x(y)+y \xrightarrow{\frac{d}{d y}} \cos (x(y) \cdot y)\left(\frac{d x}{d y} y+x(y) \cdot 1\right)=\frac{d x}{d y}+1$.
In other words, $\left(x^{\prime} y+x\right) \cos (x y)=x^{\prime}+1$. Plug in $x=1$ and $y=0$:
$\left(x^{\prime} \cdot 0+1\right) \cos (1 \cdot 0)=x^{\prime}+1 \Longrightarrow x^{\prime}=0$. So $\left.\frac{d x}{d y}\right|_{\substack{x=1 \\ y=0}}=0$.

What is $d x / d y$ geometrically?

We have got that $\frac{d x}{d y}=0$ at $(1,0)$.
Since $\frac{d y}{d x}=\frac{1}{d x / d y}$, then $\frac{d y}{d x}=\infty$ at $(1,0)$,
and the curve has the vertical tangent line at $(1,0)$.

Summary/Comprehension checkpoint

In this lecture we learned how to differentiate a function defined implicitly.

- Show that the point $(1,0)$ belongs to the curve $x \ln \left(x^{2}+y^{2}\right)+y=0$ and find the equation of the tangent line to the curve at this point.

