The Second Derivative Test

Objectives 2
Concavity 3
Inflection points 4
Examples of inflection points 5
The second derivative at an inflection point 6
What if $f^{\prime \prime}(c)=0$, and what if $f^{\prime \prime}(c)$ does not exist? 7
Using concavity and inflection points for graphing 8
Information from the second derivative 9
Putting everything together 10
The second derivative test. 11
The second derivative test: example 12
First derivative test vs. Second derivative test 13
Drawing functions with singular points 14
Working on the example: first derivative test 15
Working on the example: second derivative 16
Working on the example: concavity 17
Summary 18
Comprehension checkpoint 19

Objectives

In this lecture we will learn how to use the second derivative of a function to find intervals of concavity and inflection points.

We will apply the second derivative test to the classification of local extrema.
We will see how to use information about the second derivative to draw the graph of a function.
$2 / 19$

Concavity

Definition. A differentiable function f is concave $u p$ on an interval
if f^{\prime} increases on the interval.

In this case, the graph is located above the tangents at all points on the interval.
If $f^{\prime \prime}$ exists, then f is concave up if and only if $f^{\prime \prime}>0$.

A function f is concave down on an interval if f^{\prime} decreases on the interval.
In this case, the graph is located below the tangents at
all points on the interval.
If $f^{\prime \prime}$ exists, then f is concave down
if and only if $f^{\prime \prime}<0$.

Inflection points

Definition. An inflection point is a point where the graph changes concavity.
Example. $x=0$ is an inflection point for the function $f(x)=x^{3}$.

At an inflection point, the graph passes from one side of the tangent line to the other.

Examples of inflection points

Remark. $y=\sqrt[3]{x}$ is not differentiable at $x=0$.

The second derivative at an inflection point

Theorem. If c is an inflection point and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.
Proof. If c is an inflection point, then f is concave up to the left of c and concave down to the right from c, or vice versa:

or

Therefore, f^{\prime} increases to the left from c and decreases to the right from c (or vice versa):

It follows that f^{\prime} has a local maximum or local minimum at c,
and, therefore, by Fermat' theorem, $f^{\prime \prime}(c)=0$.

What if $f^{\prime \prime}(c)=0$, and what if $f^{\prime \prime}(c)$ does not exist?

We have proven that if c is an inflection point then $f^{\prime \prime}(c)=0$.
The converse is not true.
For example, $f(x)=x^{4}$ does not have an inflection point at $x=0$ though
$f^{\prime \prime}(0)=\left.\frac{d^{2}\left(x^{4}\right)}{d x^{2}}\right|_{x=0}=\left.12 x^{2}\right|_{x=0}=0 . \quad \underbrace{y}_{x}$
It may happen that c is an inflection point, but $f^{\prime \prime}(c)$ does not exist.
For example, $f(x)=\sqrt[3]{x}$ has an inflection point at $x=0$

but $f^{\prime \prime}(x)=\frac{d^{2}\left(x^{1 / 3}\right)}{d x^{2}}=\left(\frac{1}{3} x^{-2 / 3}\right)^{\prime}=-\frac{2}{9} x^{-5 / 3}=-\frac{2}{9 \sqrt[3]{x^{5}}}$ does not exist at 0 .

Using concavity and inflection points for graphing

Example 1. For the function $f(x)=x^{4}-2 x^{3}+1$, find

- local extrema and determine their types (local maximum or local minimum),
- intervals of increase and interval of decrease,
- intervals of up and down concavity,
- inflection points.

Using this information, draw the graph of the function.
Solution. Calculate the first derivative: $f^{\prime}(x)=4 x^{3}-6 x^{2}=2 x^{2}(2 x-3)$.
Find the critical points (where $f^{\prime}(x)=0$):
$f^{\prime}(x)=0 \Longleftrightarrow 2 x^{2}(2 x-3)=0 \Longleftrightarrow x=0$ or $x=3 / 2$.
Do the first derivative test:

Information from the second derivative

Calculate the second derivative:
$f^{\prime \prime}(x)=\left(4 x^{3}-6 x^{2}\right)^{\prime}=12 x^{2}-12 x=12 x(x-1)$.
Determine the sign of $f^{\prime \prime}$, the intervals of concavity and the inflection points:

For graphing, we need the values of f at the local minimum $x=3 / 2$
and at the inflection points $x=0$ and $x=1$:
$f(3 / 2)=(3 / 2)^{4}-2(3 / 2)^{3}+1=-11 / 16$,
$f(0)=0^{4}-2 \cdot 0^{3}+1=1$,
$f(1)=1^{4}-2 \cdot 1^{3}+1=0$.

Putting everything together

What do we know about our function $f(x)=x^{4}-2 x^{3}+1$?

- f decreases on $(-\infty, 1]$ and increases on $[1, \infty]$
- $(3 / 2,-11 / 16)$ is a local minimum
- $(0,1)$ and $(1,0)$ are inflection points
- f is concave up on $(-\infty, 0]$ and $[1, \infty)$, and concave down on $[0,1]$.

Using this information, we can draw the graph:

The second derivative test

Theorem. Let c be a critical point of f, that is, $f^{\prime}(c)=0$.
If $f^{\prime \prime}(c)<0$ then c is a local maximum,
if $f^{\prime \prime}(c)>0$ then c is a local minimum,
if $f^{\prime \prime}(c)=0$ then the test is inconclusive.

Proof. Let $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$. Then

$$
\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)}{h}=\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c)}{h}=f^{\prime \prime}(c)<0 .
$$

Therefore, $f^{\prime}(c+h)<0$ for all sufficiently small positive h and $f^{\prime}(c+h)>0$ for all sufficiently small negative h.

By the first derivative test, c is a local maximum.
The case of $f^{\prime \prime}(c)>0$ is handled similarly.

The second derivative test: example

Example. Find and classify the critical points of $f(x)=x^{2} e^{-x}$.
Solution. $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=\left(2 x-x^{2}\right) e^{-x}=x(2-x) e^{-x}$.
The critical points are $x=0$ and $x=2$.
To apply the second derivative test, we calculate
$f^{\prime \prime}(x)=(2-2 x) e^{-x}-\left(2 x-x^{2}\right) e^{-x}=\left(2-4 x+x^{2}\right) e^{-x}$.
Determine the signs of $f^{\prime \prime}(0)$ and $f^{\prime \prime}(2)$:
$f^{\prime \prime}(0)=2 e^{-0}=2>0, \quad f^{\prime \prime}(2)=-2 e^{-2}<0$.
Therefore $x=0$ is a local minimum and $x=2$ is a local maximum.

First derivative test vs. Second derivative test

Both the first derivative test and the second derivative test are used to classify the critical points of a function.
Which one is better?
When we need to perform a complete study of a function
(including finding intervals of increase/decrease and graphing),
the first derivative test is preferable.
Also, the first derivative test allows us to classify singular points,
for which the second derivative test does not work.
If the task is restricted to the classification of critical points
and the second derivative exists (and is not too difficult to calculate),
then the second derivative test may be more efficient.

Drawing functions with singular points

Example. For the function $f(x)=x^{2 / 3}(6-x)^{1 / 3}$, find

- local extrema and determine their types,
- intervals of increase and interval of decrease,
- intervals of concavity,
- inflection points.

Using this information, draw the graph of the function.
Solution. Use logarithmic differentiation to find f^{\prime} :
$y=x^{2 / 3}(6-x)^{1 / 3} \Longrightarrow \ln y=\frac{2}{3} \ln x+\frac{1}{3}(6-x)$.
$\frac{y^{\prime}}{y}=\frac{2}{3 x}-\frac{1}{3(6-x)}=\frac{2(6-x)-x}{3 x(6-x)}=\frac{12-3 x}{3 x(6-x)}=\frac{4-x}{x(6-x)}$.
Therefore, $y^{\prime}=y \frac{4-x}{x(6-x)}=\frac{4-x}{x^{1 / 3}(6-x)^{2 / 3}}$.

Working on the example: first derivative test

We have found $f^{\prime}(x)=\frac{4-x}{x^{1 / 3}(6-x)^{2 / 3}}$.
The critical point of f (where $\left.f^{\prime}(x)=0\right)$ is $x=4$.
The singular points of f (where $f^{\prime}(x)$ is undefined) are $x=0$ and $x=6$.
The first derivative test:

f decreases on $(-\infty, 0),[4,6)$ and $(6, \infty)$, and increases on $(0,4]$.
$x=4$ is a local maximum, $f(4)=4^{2 / 3}(6-4)^{1 / 3}=2^{5 / 3}$.
The graph has vertical tangent lines at the singular points $x=0$ and $x=6$.
$x=0$ and $x=6$ are the x-intercepts of the graph since $f(0)=0, f(6)=0$.

Working on the example: second derivative

To investigate concavity, we have to calculate the second derivative.
Since $f^{\prime}(x)=\frac{4-x}{x^{1 / 3}(6-x)^{2 / 3}}$,
we calculate $f^{\prime \prime}(x)$ using logarithmic differentiation.
Let $u=\frac{4-x}{x^{1 / 3}(6-x)^{2 / 3}}=(4-x) x^{-1 / 3}(6-x)^{-2 / 3}$, then $\ln u=\ln (4-x)-\frac{1}{3} \ln x-\frac{2}{3} \ln (6-x)$, and
$\frac{u^{\prime}}{u}=-\frac{1}{4-x}-\frac{1}{3 x}+\frac{2}{3(6-x)}=\cdots=\frac{-8}{x(4-x)(6-x)}$. So
$u^{\prime}=u\left(-\frac{8}{x(4-x)(6-x)}\right)=\frac{4-x}{3 x^{1 / 3}(6-x)^{2 / 3}}\left(\frac{-8}{x(4-x)(6-x)}\right)$
$=\frac{-8}{x^{4 / 3}(6-x)^{5 / 3}}$. By this, since $u=f^{\prime}(x)$, this means $f^{\prime \prime}(x)=\frac{-8}{x^{4 / 3}(6-x)^{5 / 3}}$.

Working on the example: concavity

The sign of $f^{\prime \prime}(x)=\frac{-8}{x^{4 / 3}(6-x)^{5 / 3}}$ determines concavity:

inflection pt
The graph is concave down on $(-\infty, 0)$ and $(0,6)$, and concave up on $(6, \infty)$.

Summary

In this lecture we learned

- what it means for a function to be concave up or concave down on an interval
- what an inflection point is
- how to use the second derivative test to determine the types of local extrema
- how to use the first and second derivative tests to analyze functions.

Comprehension checkpoint

- Let $x=1$ be an inflection point of $f(x)$. Is it true that $f^{\prime \prime}(1)=0$?
- Let $f^{\prime \prime}(3)=0$. Is it true that $x=3$ is an inflection point of f ?
- Let $f^{\prime \prime}(x)>0$ on $[1,2]$. Is it true that f increases on $[1,2]$?
- Let $f^{\prime \prime}(x)>0$ on $[1,2]$. Is it true that f^{\prime} increases on $[1,2]$?
- Let $f^{\prime \prime}(x)>0$ on $[1,2]$. Is it true that f is concave up $[1,2]$?
- Let $f^{\prime \prime}(1)=0, \quad f^{\prime \prime}(x)>0$ on $[0,1)$ and $f^{\prime \prime}(x)<0$ on $(1,2]$.

Is it true that $x=1$ is an inflection point of f ?

