Lecture 20

The Second Derivative Test

Objectives	2
Concavity	
Inflection points.	
Examples of inflection points.	
The second derivative at an inflection point.	
What if $f''(c) = 0$, and what if $f''(c)$ does not exist?	
Using concavity and inflection points for graphing	. 8
Information from the second derivative	. 9
Putting everything together.	10
The second derivative test.	11
The second derivative test: example	12
First derivative test vs. Second derivative test	13
Drawing functions with singular points	14
Working on the example: first derivative test	15
Working on the example: second derivative	16
Working on the example: concavity	17
Summary	18
Comprehension checkpoint	

Objectives

In this lecture we will learn how to use the **second** derivative of a function to find intervals of **concavity** and **inflection** points.

We will apply the second derivative test to the **classification** of local extrema.

We will see how to use information about the second derivative to draw the graph of a function.

2 / 19

What if f''(c) = 0, and what if f''(c) does not exist? We have proven that if c is an inflection point then f''(c) = 0. The converse is **not** true. For example, $f(x) = x^4$ does not have an inflection point at x = 0 though $f''(0) = \frac{d^2(x^4)}{dx^2}\Big|_{x=0} = 12x^2\Big|_{x=0} = 0$. It may happen that c is an inflection point, but f''(c) does not exist. For example, $f(x) = \sqrt[3]{x}$ has an inflection point at x = 0 $y = \sqrt[y]{y=\sqrt[x]{x}}$ but $f''(x) = \frac{d^2(x^{1/3})}{dx^2} = \left(\frac{1}{3}x^{-2/3}\right)' = -\frac{2}{9}x^{-5/3} = -\frac{2}{9\sqrt[3]{x^5}}$ does not exist at 0. 7/19

Information from the second derivative

Calculate the **second derivative**:

 $f''(x) = (4x^3 - 6x^2)' = 12x^2 - 12x = 12x(x - 1).$

Determine the sign of f'', the intervals of concavity and the inflection points:

For graphing, we need the values of f at the local minimum x = 3/2and at the inflection points x = 0 and x = 1:

$$\begin{split} f(3/2) &= (3/2)^4 - 2(3/2)^3 + 1 = -11/16, \\ f(0) &= 0^4 - 2 \cdot 0^3 + 1 = 1, \\ f(1) &= 1^4 - 2 \cdot 1^3 + 1 = 0. \end{split}$$

Putting everything together

What do we know about our function $f(x) = x^4 - 2x^3 + 1$?

- f decreases on $(-\infty,1]$ and increases on $[1,\infty]$
- (3/2, -11/16) is a local minimum
- (0,1) and (1,0) are inflection points
- f is concave up on $(-\infty, 0]$ and $[1, \infty)$, and concave down on [0, 1].

Using this information, we can draw the graph:

First derivative test vs. Second deriva	ative test
Both the first derivative test and the second Which one is better?	derivative test are used to classify the critical points of a function.
When we need to perform a complete study (inclu the first derivative test is preferable.	y of a function ding finding intervals of increase/decrease and graphing),
Also, the first derivative test allows us to class	ssify singular points , for which the second derivative test does not work.
If the task is restricted to the classification o and the seco then the second derivative test may be more	nd derivative exists (and is not too difficult to calculate),
	13 / 1

Drawing functions with singular points

Example. For the function $f(x) = x^{2/3}(6-x)^{1/3}$, find

- local extrema and determine their types,
- intervals of increase and interval of decrease,
- intervals of concavity,
- inflection points.

Using this information, draw the graph of the function.

Solution. Use logarithmic differentiation to find f':

$$\begin{split} y &= x^{2/3}(6-x)^{1/3} \implies \ln y = \frac{2}{3}\ln x + \frac{1}{3}(6-x) \,. \\ \frac{y'}{y} &= \frac{2}{3x} - \frac{1}{3(6-x)} = \frac{2(6-x)-x}{3x(6-x)} = \frac{12-3x}{3x(6-x)} = \frac{4-x}{x(6-x)} \,. \end{split}$$
Therefore, $y' = y \frac{4-x}{x(6-x)} = \frac{4-x}{x^{1/3}(6-x)^{2/3}} . \end{split}$

Working on the example: second derivative

To investigate concavity, we have to calculate the second derivative.

Since
$$f'(x) = \frac{4-x}{x^{1/3}(6-x)^{2/3}}$$
,
we calculate $f''(x)$ using logarithmic differentiation.
Let $u = \frac{4-x}{x^{1/3}(6-x)^{2/3}} = (4-x)x^{-1/3}(6-x)^{-2/3}$, then $\ln u = \ln(4-x) - \frac{1}{3}\ln x - \frac{2}{3}\ln(6-x)$, and
 $\frac{u'}{u} = -\frac{1}{4-x} - \frac{1}{3x} + \frac{2}{3(6-x)} = \dots = \frac{-8}{x(4-x)(6-x)}$. So
 $u' = u\left(-\frac{8}{x(4-x)(6-x)}\right) = \frac{4-x}{3x^{1/3}(6-x)^{2/3}}\left(\frac{-8}{x(4-x)(6-x)}\right)$
 $= \frac{-8}{x^{4/3}(6-x)^{5/3}}$. By this, since $u = f'(x)$, this means $f''(x) = \frac{-8}{x^{4/3}(6-x)^{5/3}}$.

Summary

In this lecture we learned

- what it means for a function to be concave up or concave down on an interval
- what an inflection point is
- \bullet how to use the $second\ derivative\ test$ to determine the types of local extrema
- how to use the first and second derivative tests to analyze functions.

18 / 19

Comprehension checkpoint
• Let $x = 1$ be an inflection point of $f(x)$. Is it true that $f''(1) = 0$?
• Let $f''(3) = 0$. Is it true that $x = 3$ is an inflection point of f ?
• Let $f''(x) > 0$ on $[1,2]$. Is it true that f increases on $[1,2]$?
• Let $f''(x) > 0$ on $[1,2]$. Is it true that f' increases on $[1,2]$?
• Let $f''(x) > 0$ on $[1,2]$. Is it true that f is concave up $[1,2]$?
• Let $f''(1) = 0$, $f''(x) > 0$ on $[0,1)$ and $f''(x) < 0$ on $(1,2]$. Is it true that $x = 1$ is an inflection point of f ?