## First Derivative Test

Objectives ..... 2
Increasing and decreasing functions ..... 3
The Increasing/decreasing test ..... 4
The first derivative test at a critical point ..... 5
The first derivative test at a singular point ..... 6
First derivative test: example ..... 7
Example ..... 8
The method of intervals ..... 9
Drawing the graph: beginning ..... 10
Drawing the graph: completion ..... 11
Graphing a function and its derivatives ..... 12
Graphing functions with singular points ..... 13
Graphing functions with singular points ..... 14
Summary ..... 15
Comprehension checkpoint ..... 16

## Objectives

In this lecture we will learn how to use the first derivative of a function
to explore the function's behavior, namely how

- to find intervals where the function increases and intervals where it decreases
- to find and classify critical and singular points.

We will see how to use the information to draw the graph of a function.

## Increasing and decreasing functions

Definition. Let $f$ be a function defined on an interval $I$.
$f$ is called increasing on $I$ if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in I$ and $x_{1}<x_{2}$.
$f$ is called decreasing on $I$ if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in I$ and $x_{1}<x_{2}$.
Example. $f(x)=x^{2}$ decreases on $(-\infty, 0]$ and increases on $[0, \infty)$.
Indeed, for any $x_{1}<x_{2} \leq 0$, we have
$f\left(x_{1}\right)-f\left(x_{2}\right)=x_{1}^{2}-x_{2}^{2}=\underbrace{\left(x_{1}-x_{2}\right)}_{<0} \underbrace{\left(x_{1}+x_{2}\right)}_{<0}>0$.
So $f\left(x_{1}\right)>f\left(x_{2}\right)$. Thus $f$ decreases on $(-\infty, 0]$. For any $0 \leq x_{1}<x_{2}$, we have
$f\left(x_{1}\right)-f\left(x_{2}\right)=x_{1}^{2}-x_{2}^{2}=\underbrace{\left(x_{1}-x_{2}\right)}_{<0} \underbrace{\left(x_{1}+x_{2}\right)}_{>0}<0$.
So $f\left(x_{1}\right)<f\left(x_{2}\right)$. Thus $f$ increases on $[0, \infty)$.

## The Increasing/decreasing test

To check from the definition whether a function is increasing/decreasing may be cumbersome. The theorem below gives a simple and convenient criterion for increasing/decreasing in terms of the derivative.

Theorem. If $f^{\prime}(x)>0$ for all $x$ in an interval, then $f$ is increasing on that interval.
If $f^{\prime}(x)<0$ for all $x$ in an interval, then $f$ is decreasing on that interval.
Proof. Assume that $f^{\prime}(x)>0$ for all $x$ in an interval.
Choose any two points $x_{1}, x_{2}$ in the interval with $x_{1}<x_{2}$.
Then, by the Mean Value Theorem, there exists a point $x$ in the interval such that
$f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(x)\left(x_{2}-x_{1}\right)$.
Since $f^{\prime}(x)>0$ and $x_{2}-x_{1}>0$, this means that $f\left(x_{2}\right)-f\left(x_{1}\right)>0$,
that is $f\left(x_{2}\right)>f\left(x_{1}\right)$. Therefore, $f$ is increasing.
For $f^{\prime}(x)<0$, the proof is similar.

## The first derivative test at a critical point

Definition. A point $x$ is called a critical point of $f$ if $f^{\prime}(x)=0$.
The following theorem follows directly from the increasing/decreasing test.

## Theorem (First derivative test).

Let $c$ be a critical point of a differentiable function $f$, that is, $f^{\prime}(c)=0$.

- If the sign of $f^{\prime}$ changes from + to - at $c$, then $c$ is a local maximum:

- If the sign of $f^{\prime}$ changes from - to + at $c$, then $c$ is a local minimum:

- If the sign of $f^{\prime}$ does not change at $c$, then $c$ is neither local maximum nor local minimum.


## The first derivative test at a singular point

Definition. A point $x$ in the domain of a function $f$ is called a singular point of $f$ if $f^{\prime}(x)$ does not exist (that is $f(x)$ is defined, but $f^{\prime}(x)$ is not.)
Theorem (First derivative test).
Let $c$ be a singular point of a continuous function $f$ (i.e. $f^{\prime}(c)$ does not exist) and assume that $f$ is differentiable at all $x$ near $c$ excluding $c$.

- If the sign of $f^{\prime}$ changes from + to - at $c$, then $c$ is a local maximum:

- If the sign of $f^{\prime}$ changes from - to + at $c$, then $c$ is a local minimum:

- If the sign of $f^{\prime}$ doesn't change at $c$, then $c$ is nether local maximum nor local minimum.


## First derivative test: example

Problem. For the function $f(x)=x^{3}-3 x$, find

- local extrema and determine their types (local maximum or local minimum),
- the intervals of increase and intervals of decrease,
- draw the graph of the function.

Solution. We know that if a function is differentiable, then the derivative vanishes at local extreme points (Fermat's theorem).
The function is differentiable, so our plan of our solution is the following:

1. Find the critical points $(C P)$ of $f$, that is the points where $f^{\prime}(x)=0$.

The extreme points are among them.
2. Apply the first derivative test to determine
the intervals of increase/decrease and the types of the extreme points.
3. Use information from $\mathbf{1}$ and 2 to draw the graph of the function.

## Example

We start with finding the critical points of $f(x)=x^{3}-3 x$ :

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow 3 x^{2}-3=0 \Longleftrightarrow x^{2}-1=0 \Longleftrightarrow(x-1)(x+1)=0 \\
& \Longleftrightarrow x=-1 \text { or } x=1 .
\end{aligned}
$$

So there are two critical points: $x=-1$ and $x=1$. To determine whether they are extreme points and find the intervals of increase/decrease,
we perform the first derivative test.
To determine the sign of $f^{\prime}$, we have to solve the inequalities $f^{\prime}>0$ and $f^{\prime}<0$. We solve the inequalities by the method of intervals.
On the real axis, we place the critical points:


Two critical points split the real axis into three intervals.
The sign of the derivative stays unchanged on each interval.

## The method of intervals

To determine the sign of derivative on each interval,
we choose a test point $x$ within the interval and determine the sign of $f^{\prime}(x)$.


For example, $f^{\prime}(0)=3 x^{2}-\left.3\right|_{x=0}=-3<0$.
In a similar way we determine the sign of $f^{\prime}$ on the other two intervals.
Using the increasing/decreasing test, we find the intervals of increase/decrease.
$f$ increases on $(-\infty,-1]$ and $[1, \infty)$, decreases on $[-1,1]$.
Now apply now the first derivative test to determine the types of the critical points.
Then we will be ready to draw the graph of the function.

## Drawing the graph: beginning

First of all, we determine the locations of the extreme points on the graph.
The value of the function $f(x)=x^{3}-3 x$ at the local maximum $x=-1$ is $f(-1)=(-1)^{3}-3(-1)=-1+3=2$.
The value of $f$ at the local minimum $x=1$ is $f(1)=1^{3}-3 \cdot 1=-2$. Therefore,
$f$ has a local maximum at $(-1,2)$ and a local minimum at $(1,-2)$


Draw a small "hat" at $(-1,2)$
and a small "cup" at $(1,-2)$.

## Drawing the graph: completion

To continue the drawing, we observe that $f(x)=x^{3}-3 x$ is an odd function since $f(-x)=-f(x)$ for any $x$ :
$f(-x)=(-x)^{3}-3(-x)=-x^{3}+3 x=-\left(x^{3}-3 x\right)=-f(x)$.
Therefore, the graph of $f$ is symmetric about the origin.
We locate the $x$-intercepts of the graph by solving $f(x)=0$ :
$f(x)=0 \Longleftrightarrow x^{3}-3 x=0 \Longleftrightarrow x\left(x^{2}-3\right)=0 \Longleftrightarrow x=0$ or $x=\sqrt{3}$ or $x=-\sqrt{3}$.


Using this information, we can complete our sketch of the graph.

## Graphing a function and its derivatives

 and of its first three derivatives
$f^{\prime}(x)=3 x^{2}-3, f^{\prime \prime}(x)=6 x, f^{\prime \prime \prime}(x)=6:$

$f \nearrow \Longleftrightarrow f^{\prime}>0 \Longleftrightarrow x \in(-\infty,-1]$ or $x \in[1, \infty)$
$f \searrow \Longleftrightarrow f^{\prime}<0 \Longleftrightarrow x \in[-1,1]$
$f^{\prime} \nearrow \Longleftrightarrow f^{\prime \prime}>0 \Longleftrightarrow x \in[0, \infty)$
$f^{\prime} \searrow \Longleftrightarrow f^{\prime \prime}<0 \Longleftrightarrow x \in(-\infty, 0]$
$f^{\prime \prime} \nearrow \Longleftrightarrow f^{\prime \prime \prime}>0 \Longleftrightarrow x \in(-\infty, \infty)$
Don't mix up a function and its derivative!

## Graphing functions with singular points

Example. For the function $f(x)=3 x^{2 / 3}-2 x$, find

- local extrema and determine their types (local maximum or local minimum),
- the intervals of increase and intervals of decrease,
- draw the graph of the function.

Solution. $f^{\prime}(x)=\left(3 x^{2 / 3}-2 x\right)^{\prime}=2 x^{-1 / 3}-2=2\left(\frac{1-\sqrt[3]{x}}{\sqrt[3]{x}}\right)$.
Critical points: $f^{\prime}(x)=0 \Longleftrightarrow x=1$.
Singular points: $f^{\prime}(x)$ does not exist $\Longleftrightarrow x=0$.
First derivative test:

loc min
At $x=0, f$ has a vertical tangent line, since $\lim _{x \rightarrow 0}\left|f^{\prime}(x)\right|=\infty$.

## Graphing functions with singular points ${ }_{f^{\prime}}$


loc min
From the first derivative test, we are obtain the following information:
$f$ increases on $[0,1], f$ decreases on $(-\infty, 0]$ and $[1, \infty)$.
$f$ has local minimum at $x=0, f(0)=3 \cdot 0^{2 / 3}-2 \cdot 0=0$,
$\triangle$ Warning: at $(0,0)$, the graph has a vertical tangent line.
$f$ has a local maximum at $x=1, f(1)=3 \cdot 1^{2 / 3}-2 \cdot 1=1$.
$x$-intercepts: $f(x)=0 \Longleftrightarrow 3 x^{2 / 3}-2 x=0 \Longleftrightarrow$
$2 x^{2 / 3}\left(3 / 2-x^{1 / 3}\right)=0 \Longleftrightarrow x=0$ or $x=27 / 8$.
With this information, we can make a sketch of the graph.


## Summary

In this lecture we learned how to apply the first derivative test to a function

- to find and classify the critical and singular points of the function
- to find the function's intervals of increase and intervals of decrease.


## Comprehension checkpoint

- From the first derivative test, you obtained the following information about a function $y=f(x)$ :

(The values written under the axis are the values of $x$, not $f$.)
Additionally, you know that $f(-1)=f(1)=1, \quad f(0)=3$ and $f(2)=3$.
Sketch the graph of $y=f(x)$.
- Given this graph for $y=f(x)$,
draw the graphs of $y=f^{\prime}(x), y=f^{\prime \prime}(x), y=f^{\prime \prime \prime}(x)$ and $y=f^{(4)}(x)$ :


