Lecture 19

First Derivative Test

Objectives
Increasing and decreasing functions
The Increasing/decreasing test
The first derivative test at a critical point 5
The first derivative test at a singular point 6
First derivative test: example
Example
The method of intervals
Drawing the graph: beginning
Drawing the graph: completion
Graphing a function and its derivatives
Graphing functions with singular points
Graphing functions with singular points
Summary
Comprehension checkpoint

Objectives

In this lecture we will learn how to use **the first derivative** of a function to explore the function's behavior, namely how

- to find intervals where the function increases and intervals where it decreases
- to find and classify critical and singular points.

We will see how to use the information to draw the graph of a function.

2 / 16

Increasing and decreasing functions

Definition. Let f be a function defined on an interval I.

- f is called *increasing* on I if $f(x_1) < f(x_2)$ whenever $x_1, x_2 \in I$ and $x_1 < x_2$.
- f is called *decreasing* on I if $f(x_1) > f(x_2)$ whenever $x_1, x_2 \in I$ and $x_1 < x_2$.

Example. $f(x) = x^2$ decreases on $(-\infty, 0]$ and increases on $[0, \infty)$.

Indeed, for any $x_1 < x_2 \leq 0$, we have

 $f(x_1) - f(x_2) = x_1^2 - x_2^2 = \underbrace{(x_1 - x_2)}_{<0} \underbrace{(x_1 + x_2)}_{<0} > 0.$

So $f(x_1) > f(x_2)$. Thus f decreases on $(-\infty, 0]$. For any $0 \le x_1 < x_2$, we have

 $f(x_1) - f(x_2) = x_1^2 - x_2^2 = \underbrace{(x_1 - x_2)}_{<0} \underbrace{(x_1 + x_2)}_{>0} < 0.$

So $f(x_1) < f(x_2)$. Thus f increases on $[0, \infty)$.

The Increasing/decreasing test

To check from the definition whether a function is increasing/decreasing may be cumbersome. The theorem below gives a simple and convenient criterion for increasing/decreasing in terms of the derivative.

Theorem. If f'(x) > 0 for all x in an interval, then f is **increasing** on that interval. If f'(x) < 0 for all x in an interval, then f is **decreasing** on that interval.

Proof. Assume that f'(x) > 0 for all x in an interval.

Choose any two points x_1, x_2 in the interval with $x_1 < x_2$.

Then, by the Mean Value Theorem, there exists a point x in the interval such that

 $f(x_2) - f(x_1) = f'(x)(x_2 - x_1).$

Since f'(x)>0 and $x_2-x_1>0$, this means that $f(x_2)-f(x_1)>0$,

that is $f(x_2) > f(x_1)$. Therefore, f is increasing.

For f'(x) < 0, the proof is similar.

The first derivative test at a critical point Definition. A point x is called a critical point of f if f'(x) = 0. The following theorem follows directly from the increasing/decreasing test. Theorem (First derivative test). Let c be a critical point of a differentiable function f, that is, f'(c) = 0. • If the sign of f' changes from + to - at c, then c is a local maximum: $\begin{array}{r} + & 0 & - & f' \\ \hline & c & & f \end{array}$ • If the sign of f' changes from - to + at c, then c is a local minimum: $\begin{array}{r} - & 0 & + & f' \\ \hline & c & & f \end{array}$ • If the sign of f' changes from - to + at c, then c is a local minimum: $\begin{array}{r} - & 0 & + & f' \\ \hline & c & & f \end{array}$ • If the sign of f' does not change at c, then c is neither local maximum nor local minimum.

First derivative test: example
Problem. For the function $f(x) = x^3 - 3x$, find • local extrema and determine their types (local maximum or local minimum), • the intervals of increase and intervals of decrease, • draw the graph of the function.
Solution. We know that if a function is differentiable, then the derivative vanishes at local extreme points (Fermat's theorem).
The function is differentiable, so our plan of our solution is the following:
1. Find the critical points (CP) of f , that is the points where $f'(x) = 0$. The extreme points are among them.
2. Apply the first derivative test to determine the intervals of increase/decrease and the types of the extreme points.
3. Use information from 1 and 2 to draw the graph of the function.
7 / 16

Example

We start with finding the **critical points** of $f(x) = x^3 - 3x$:

$$f'(x) = 0 \iff 3x^2 - 3 = 0 \iff x^2 - 1 = 0 \iff (x - 1)(x + 1) = 0$$
$$\iff x = -1 \text{ or } x = 1.$$

So there are two critical points: x = -1 and x = 1. To determine whether they are extreme points and find the intervals of increase/decrease,

we perform the **first derivative test**.

To determine the sign of f', we have to solve the inequalities f' > 0 and f' < 0. We solve the inequalities by the method of intervals.

On the real axis, we place the critical points:

Two critical points split the real axis into three intervals. The sign of the derivative stays unchanged on each interval.

8 / 16

Drawing the graph: completion To continue the drawing, we observe that $f(x) = x^3 - 3x$ is an odd function since f(-x) = -f(x)for any x: $f(-x) = (-x)^3 - 3(-x) = -x^3 + 3x = -(x^3 - 3x) = -f(x)$. Therefore, the graph of f is symmetric about the origin. We locate the x-intercepts of the graph by solving f(x) = 0: $f(x) = 0 \iff x^3 - 3x = 0 \iff x(x^2 - 3) = 0 \iff x = 0 \text{ or } x = \sqrt{3} \text{ or } x = -\sqrt{3}$. $y = x^3 - 3x$ $y = x^3 - 3x$ Using this information, we can complete our sketch of the graph.

12 / 16

Summary

In this lecture we learned how to apply the first derivative test to a function

- to find and classify the critical and singular points of the function
- to find the function's intervals of increase and intervals of decrease.

Comprehension checkpoint

• From the first derivative test, you obtained the following information about a function y = f(x):

(The values written under the axis are the values of x, not f.) Additionally, you know that f(-1) = f(1) = 1, f(0) = 3 and f(2) = 3. Sketch the graph of y = f(x).

• Given this graph for y = f(x), draw the graphs of y = f'(x), y = f''(x), y = f''(x) and $y = f^{(4)}(x)$:

y = f(x)

