#### Lecture 18

## Mean Value Theorem

| Objectives                                  | ) |
|---------------------------------------------|---|
| Rolle's theorem                             | 3 |
| The Mean Value Theorem (Lagrange's theorem) | 1 |
| Proof of the Mean Value Theorem             | 5 |
| Corollaries of the Mean Value Theorem       | ĵ |
| Using the MVT to prove inequalities         | 7 |
| Summary                                     | 3 |
| Comprehension checkpoint                    | ) |

#### **Objectives**

In this lecture we discuss the statement, a proof and corollaries of the **Mean Value Theorem**.

2 / 9







# Proof of the Mean Value Theorem Proof. Consider a new function $g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$ . It is continuous on [a, b] and differentiable on (a, b)(since both functions f and (x - a) are continuous) and g(a) = f(a), $g(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = f(a)$ . Therefore, we may apply Rolle's theorem to gand conclude that there exists some $c \in (a, b)$ such that g'(c) = 0, that is $0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} \iff f'(c) = \frac{f(b) - f(a)}{b - a}$ .

5 / 9

| Corollaries of the Mean Value Theorem                                                             |       |
|---------------------------------------------------------------------------------------------------|-------|
| <b>Corollary 1.</b> If $f'(x) = 0$ for all x in an interval, then f is constant on that interval. |       |
| <b>Proof.</b> Take any two distinct points $a, b$ in the interval.                                |       |
| By the Mean Value Theorem, there exists some $x\in(a,b)$ such that                                |       |
| $f'(x) = \frac{f(b) - f(a)}{b - a}.$                                                              |       |
| Since $f'(x) = 0$ for all $x$ in the interval, we obtain $f(a) = f(b)$ .                          |       |
| So $f$ takes the same value at any two points in the interval,                                    |       |
| that is, $f$ is constant on the interval.                                                         |       |
| <b>Corollary 2.</b> If $f'(x) = g'(x)$ for all $x$ on some interval, then $f = g + C$ .           |       |
| <b>Proof.</b> $(f-g)' = f' - g' = 0$ . So by Corollary 1,                                         |       |
| f-g=C for some constant $C$ . Therefore, $f=g+C$ .                                                |       |
|                                                                                                   | 6 / 9 |

Using the MVT to prove inequalities Example. Prove that  $\tan x > x$  for all  $x \in \left(0, \frac{\pi}{2}\right)$ . Solution. Take any  $x \in \left(0, \frac{\pi}{2}\right)$  and consider the function  $f(x) = \tan x$  on the interval [0, x]. f is differentiable on [0, x], therefore we may apply the Mean Value Theorem to the function f and the interval [0, x]. By the MVT, there exists a point  $x_0 \in (0, x)$  such that  $\frac{f(x) - f(0)}{x - 0} = f'(x_0) \iff \frac{\tan x}{x} = (\tan x)'\Big|_{x = x_0} \iff \frac{\tan x}{x} = \frac{1}{\cos^2 x_0}$ . Since  $0 < x_0 < \frac{\pi}{2}$ , then  $\cos^2 x_0 < 1$ . So  $\frac{1}{\cos^2 x_0} > 1$ . This gives us  $\frac{\tan x}{x} = \frac{1}{\cos^2 x_0} > 1$ , that is,  $\tan x > x$ , as required.

### Summary

In this lecture we learned

- Rolle's theorem
- the Mean Value Theorem (Lagrange's theorem)

8 / 9

### **Comprehension checkpoint**

- State Rolles' theorem and give its graphical interpretation.
- State the Mean Value Theorem and give its graphical interpretation.

9 / 9