Lecture 17

Maxima and Minima

Objectives 2
What can we see on the graph of a function? 3
Maxima 4
Minima, local and absolute extrema 5
The Extreme Value theorem (Max-Min theorem) 6
Where are the extreme values of a function located? 7
Fermat's theorem (Interior Extremum theorem) 8
Locating the extreme values 9
Extreme values: examples 10
Extreme values: examples 11
Extreme values on a closed interval 12
Extreme values on a closed interval 13
What if the interval is not closed? 14
What if the interval is not closed? 15
Summary 16
Comprehension checkpoint 17

Objectives

In the coming lectures, we will learn how to use the first and second derivatives
to explore the behavior of a function, namely how to find

- maxima and minima
- intervals where the function is increasing and intervals where it is decreasing
- intervals of concavity
- inflection points.

We will see how to use the obtained information to draw the graph of the function.
This lecture is devoted to finding maxima and minima of functions.

What can we see on the graph of a function?

Let us have a look on the graph of a function:

Which characteristic features of a function can we see on its graph?
Humps and valleys, corners, uphills and downhills, concavities, highest and lowest points.
These features provide essential information about a function and may be expressed in terms of the derivatives of the function.
Extracting information about a function from its derivatives
is an essential part of the analysis of functions.
$3 / 17$

Maxima

Definition. A function f has a local maximum value $f(c)$ at the point c
if $f(x) \leq f(c)$ for all x in the domain near c
(that is, for all $x \in(c-\delta, c+\delta)$ for a sufficiently small $\delta>0$) when c is not an ${ }^{y}$ etdpoint of the domain.

In this case, near $x=c$, the graph of $y=f(x)$ is located below or on the horizontal line $y=f(c)$.

Minima, local and absolute extrema

Definition. A function f has a local minimum value $f(c)$ at the point c
if $f(x) \geq f(c)$ for all x near c
(that is, for all $x \in(c-\delta, c+\delta)$ for a sufficiently small $\delta>0$) when c is not
an endpoint of the domain.

In this case, near $x=c$, the graph of $y=f(x)$
is located above or on the horizontal line $y=f(c)$.

The local maximum and minimum values are called local extreme values.
Definition. A function f has an absolute maximum value $f(c)$ at the point c
if $f(c) \geq f(x)$ for all x in the domain.
A function f has an absolute minimum value $f(c)$ at the point c
if $f(c) \leq f(x)$ for all x in the domain.
The absolute maximum and minimum values are called the extreme values.

The Extreme Value theorem (Max-Min theorem)

Theorem. If f is continuous on a closed interval $[a, b]$, then f attains its extreme values on this interval.
That is, there are points c and d in $[a, b]$, such that
$f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$.

Remarks: 1. An extreme value may be taken more than once.
2. The Extreme Value Theorem is fundamental in the analysis of functions.
3. This theorem gets proved in a course on Mathematical Analysis.

Where are the extreme values of a function located?

Finding the extreme values of a function is one of the most important tasks of calculus and its applications.
Let f be a continuous function. Where can its extrema be found?

Our next goal is to prove the following:
\& 48 A function may have extreme values only at points of three special types:

- critical points of f (points x where $f^{\prime}(x)=0$),
- singular points of f (points x where $f^{\prime}(x)$ doesn't exist),
- endpoints of the domain of f.

Fermat's theorem (Interior Extremum theorem)

Theorem. Let f be a function defined on (a, b). If f has a local extremum at $x \in(a, b)$ and f is differentiable at x, then $f^{\prime}(x)=0$, that is, x is a critical point of f.
Proof. Suppose that f has a local maximum value at x. This means that for all sufficiently small h with $x+h \in(a, b)$, we have $f(x+h) \leq f(x)$, that is $f(x+h)-f(x) \leq 0$. Note that h can be positive or negative.
If $h>0$, then $\frac{f(x+h)-f(x)}{h} \leq 0$ and $\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \leq 0$.
If $h<0$, then $\frac{f(x+h)-f(x)}{h} \geq 0$ and $\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} \geq 0$.
Since f is differentiable at x, these two limits must both be equal to $f^{\prime}(x)$.
That means that $f^{\prime}(x) \leq 0$ and $f^{\prime}(x) \geq 0$. Hence $f^{\prime}(x)=0$.
The proof for a local minimum is similar.
\triangle Warning: The converse of the theorem is not true.
That is, it is not true that if $f^{\prime}(x)=0$ then x is an extreme point.
For example, $f(x)=x^{3}$ has vanishing derivative at $0\left(f^{\prime}(0)=\left.3 x^{2}\right|_{x=0}=0\right)$, but f has neither a local maximum nor a local minimum at $x=0$.

Locating the extreme values

Theorem. If a function f is defined on an interval I
and has a local extremum at a point $x_{0} \in I$, then x_{0} must be either

- a critical point of f (where $\left.f^{\prime}\left(x_{0}\right)=0\right)$,
- a singular point of f (where $f^{\prime}\left(x_{0}\right)$ doesn't exist) or
- an endpoint of I.

Proof. Suppose that f has a local extremum at x_{0} and that x_{0} is neither a singular point of f nor an endpoint of I.
Since x_{0} is not a singular point, then f is differentiable at x_{0}.
Since x_{0} is not an endpoint of I, we may apply Fermat's theorem
and obtain $f^{\prime}\left(x_{0}\right)=0$. This means that x_{0} is a critical point of f.

Extreme values: examples

Example 1. Look at the graph of $f(x)=x^{2}$:

At $x=0, f$ has a local minimum (which is also the absolute minimum).
$x=0$ is a critical point of f :

$$
f^{\prime}(x)=\left.\left(x^{2}\right)^{\prime}\right|_{x=0}=\left.(2 x)\right|_{x=0}=0
$$

Example 2. Consider the function $f(x)=x^{2}$ restricted to $[-1,2]$:
f has a local minimum at $x=0$,
which is a critical point of f,
and local maximums at $x=-1$ and $x=2$,
which are endpoints of the domain.
f has the absolute minimum at $x=0$ (critical point), and the absolute maximum at $x=2$ (endpoint).

Extreme values: examples

Example 3. Consider $f(x)=|x|$.

At $x=0, f$ has a local minimum which is also the absolute minimum. $x=0$ is a singular point of $f: f^{\prime}(0)$ does not exist.

Example 4. Consider $f(x)=x^{2 / 3}$.

$$
\text { At } x=0, f \text { has a local minimum }
$$

> which is also the absolute minimum.
$x=0$ is a singular point of f.
Indeed, $f^{\prime}(x)=\left(x^{2 / 3}\right)^{\prime}=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 \sqrt[3]{x}}$
and $f^{\prime}(0)$ does not exist.

Extreme values on a closed interval

Problem 1. Find the maximum and minimum values of the function

$$
f(x)=2 x^{3}+3 x^{2}-12 x \text { on the interval }[-1,2] .
$$

Solution. The function f is continuous, and, by the Extreme Value Theorem, attains maximum and minimum values on the closed interval $[-1,2]$.

We search for the extreme values
among the critical and singular points of f, and the endpoints of the interval.
To find critical points, we calculate the derivative
$f^{\prime}(x)=6 x^{2}+6 x-12=6\left(x^{2}+x-2\right)=6(x-1)(x+2)$
and solve the equation $f^{\prime}(x)=0 \Longleftrightarrow x=1$ or $x=-2$.
There are two critical points: $x=1, x=-2$. Only $x=1$ belongs to the interval $[-1,2]$.
f has no singular points, since f^{\prime} exists for all x.
There are two endpoints: $x=-1$ and $x=2$.

Extreme values on a closed interval

We calculate the values of $f(x)=2 x^{3}+3 x^{2}-12 x$ at the critical point of f, which is $x=1$, and at the endpoints of the interval, which are $x=-1$ and $x=2$:
$f(1)=2 \cdot 1^{3}+3 \cdot 1^{2}-12 \cdot 1=-7$
$f(-1)=2(-1)^{3}+3(-1)^{2}-12(-1)=13$,
$f(2)=2 \cdot 2^{3}+3 \cdot 2^{2}-12 \cdot 2=4$.
Choose the maximal (highest) and the minimal (lowest) values among them.
The answer to the problem is
$\max f=13$, attained at the endpoint $x=-1$,
$\min _{[-1,2]} f=-7$, attained at the critical point $x=1$.

What if the interval is not closed?

In this case, a function may or may not have maximum/minimum on the interval.
Example 1. Does the function $f(x)=2 x^{3}+3 x^{2}-12 x$
Solution.
have a maximum or a minimum on the interval $(-1,2]$?

As we see from the graph,
f does not reach an absolute maximum on ($-1,2$].
The absolute minimum of -7 is attained at $x=1$.

What if the interval is not closed?

Example 2. Does the function $f(x)=2 x^{3}+3 x^{2}-12 x$

$$
\text { have a maximum or a minimum on the interval }(-3,2) \text { ? }
$$

Solution.

We see that graphs are very useful for understanding the behavior of functions.
To draw graphs accurately, we need to develop the analysis of functions further.

Summary

In this lecture we learned

- the Extreme Value Theorem
- how to find the extreme values of a continuous function on a closed interval.

Comprehension checkpoint

- Assume that a function has a local minimum at a point.

What can you say about the function at this point?

- Draw the graph of a function defined on $[-3,4]$ that has
local maxima at $x=-3,2,4$,
local minima at $x=1,3$,
critical points at $x=1,2$
a singular point at $x=3$, such that
the absolute maximum of 2 is attained at $x=-3$,
the absolute minimum of -1 is attained at $x=3$.

