Lecture 16

Linearization

Dbjectives	. 2
inear approximation	. 3
inearization	. 4
xamples of linearization	. 5
xamples of linearizations	. 6
Approximate calculations	. 7
Approximate calculations	. 8
Approximation of functions	. 9
inearization in terms of differentials	10
Δy and dy	11
Calculations with differentials	12
Calculations with differentials	13
Coulomb's law	14
Summary	15
Comprehension checkpoint	16

Objectives

In the coming lectures, we will study **applications** of the derivative:

- Linear approximation
- Analysis of functions
- Implicit differentiation
- Limits of indeterminate forms (l'Hôpital's rule)
- Related rates problems
- Optimization problems

In this lecture, we will discuss

• Linear approximation of functions and its applications.

Linearization

Let f be a function differentiable at the point x = a. The equation of the tangent line to the graph of f at the point x = a is y = f(a) + f'(a)(x - a).

Definition. The *linearization*, or *linear approximation*, of the function f near point x = ais the linear function L(x) = f(a) + f'(a)(x - a). $f(x) \approx L(x)$ near x = a.

Examples of linearizations

Example 2. Find the linear approximations to $f(x) = \sqrt{x}$ near x = 1 and x = 4. Solution. $f'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$. So $f'(1) = \frac{1}{2}$, $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$. The linearization near x = 1 is $L(x) = f(1) + f'(1)(x - 1) \iff L(x) = 1 + \frac{1}{2}(x - 1) \iff L(x) = \frac{x}{2} + \frac{1}{2}$. The linearization near x = 4 is $L(x) = f(4) + f'(4)(x - 4) \iff L(x) = 2 + \frac{1}{4}(x - 4) \iff L(x) = \frac{x}{4} + 1$.

Approximate calculations Example 3. Use linearization to find an approximate value for $\frac{1}{1.99}$. Is this approximation an overestimate or an underestimate? Solution. We can easily find the value of $\frac{1}{2}$, and since 1.99 is near 2, we may use the linear approximation L(x) = f(a) + f'(a)(x-a) for $f(x) = \frac{1}{x}$ and a = 2. Do the math: $f'(2) = f'(x)\Big|_{x=2} = \left(\frac{1}{x}\right)'\Big|_{x=2} = -\frac{1}{x^2}\Big|_{x=2} = -\frac{1}{4}$. Since $f(2) = \frac{1}{2}$, we have $L(x) = \frac{1}{2} - \frac{1}{4}(x-2)$. Leave this formula as is, without simplifications. $\frac{1}{1.99} = f(1.99) \approx L(1.99) = \frac{1}{2} - \frac{1}{4}(1.99-2) = 0.5 + \frac{0.01}{4} = 0.5 + 0.0025 = 0.5025$

Approximation of functions Example. Show that $\sqrt[5]{1+x} \approx 1 + \frac{x}{5}$ for small x. Solution. Consider the function $f(x) = \sqrt[5]{1+x}$. It is differentiable at x = 0, therefore, by linearization, $f(x) \approx L(x) = f(0) + f'(0)(x - 0)$ for x near 0. Since $f'(x) = \frac{d}{dx}(1+x)^{1/5} = \frac{1}{5}(1+x)^{-4/5}$, we have $f'(0) = \frac{1}{5}$ and $f(x) \approx L(x) = f(0) + f'(0)(x - 0) = 1 + \frac{1}{5}x = 1 + \frac{x}{5}$, as required. $y = \frac{y}{\sqrt[5]{1+x}} + \frac{x}{5}$

Linearization in terms of differentials Let y = f(x) be a function differentiable at the point x = a. According to the linearization formula, $f(x) \approx f(a) + f'(a)(x - a)$ for all x near a, or, equivalently, $f(x) - f(a) \approx f'(a)(x - a)$. Let $\Delta x = x - a$. Then $f(a + \Delta x) - f(a) \approx f'(a)\Delta x$. Rewrite this formula in terms of x instead of a: $f(x + \Delta x) - f(x) \approx f'(x)\Delta x$. Let $\Delta y = f(x + \Delta x) - f(x)$. Then $\Delta y \approx f'(x)\Delta x \iff \Delta y \approx \frac{dy}{dx}\Delta x$. Define the differential of the function as $dy = \frac{dy}{dx}\Delta x$. Then $\Delta y \approx \frac{dy}{dx}\Delta x \iff \Delta y \approx \Delta y \approx dy$ the increment (change) of the function \approx the differential of the function.

Calculations with differentials

+ 0

Example 1. A point moves along a straight line according the law $s(t) = 5t^2$, where t is time in seconds and s(t) is the distance from the origin, in meters.

At time moment t = 2 sec, calculate the displacement Δs and the differential ds over the time intervals **a**) $\Delta t = 1$ sec **b**) $\Delta t = 0.1$ sec.

Solution.

$$\begin{array}{c} \Delta s \\ \hline \\ s(t) \\ s(t + \Delta t) \end{array} \leftarrow t$$

The displacement is $\Delta s = s(t + \Delta t) - s(t)$. It depends on t and Δt . The differential is $ds = s'(t)\Delta t$. It also depends on t and Δt . **a)** For t = 2 and $\Delta t = 1$, $\Delta s = s(2 + 1) - s(2) = s(3) - s(2) = 5 \cdot 3^2 - 5 \cdot 2^2 = 5(9 - 4) = 25$ (m) $ds = 10t\Delta t = 10 \cdot 2 \cdot 1 = 20$ (m) **b)** For t = 2 and $\Delta t = 0.1$, $\Delta s = s(2 + 0.1) - s(2) = s(2.1) - s(2) = 5 \cdot (2.1)^2 - 5 \cdot 2^2 = 5(4.41 - 4) = 2.05$ (m) $ds = 10t\Delta t = 10 \cdot 2 \cdot 0.1 = 2$ (m). By linearization, $\Delta s \approx ds$, so for $\Delta t = 1$, $25 \approx 20$ and for $\Delta t = 0.1$, $2.05 \approx 2$. The smaller Δt is, the better the approximation.

12 / 16

Calculations with differentials

Example 2. A spherical balloon inflates so that its radius increases from 5 cm to 5.4 cm. By approximately how much does the volume increase? **Solution.** The volume V of a ball of radius r is $V = \frac{4}{3}\pi r^3$. The increase of volume from r = 5 to $r + \Delta r = 5.4$ ($\Delta r = 0.4$) is $\Delta V = V(r + \Delta r) - V(r) = V(5.4) - V(5)$. By linearization, $\Delta V \approx dV = V'(r)\Delta r = 4\pi r^2\Delta r$. When r = 5 and $\Delta r = 0.4$, we get $\Delta V \approx 4\pi \cdot 5^2 \cdot 0.4 = 40\pi \approx 125.7$ cm³.

Coulomb's law

According to the **Coulomb's law**, the electrostatic force F between two charges q_1 and q_2 located at a distance r from each other, is given by $F = k \frac{q_1 q_2}{r^2}$, where k is Coulomb's constant.

If the distance between the charges was measured to be 1m with an error of at most 1cm, what is the **relative error** in the calculation of the electrostatic force?

Solution. The relative error is $\left|\frac{\Delta F}{F}\right|$.

By linearization, $\Delta F \approx dF = -2k \frac{q_1 q_2}{r^3} \Delta r$, therefore

$$\left|\frac{\Delta F}{F}\right| \approx \left|\frac{-2k\frac{q_1q_2}{r^3}\Delta r}{k\frac{q_1q_2}{r^2}}\right| = \frac{2\Delta r}{r} \,.$$

We are given r=1m and $\Delta r=1cm=0.01m$, so

$$\left|\frac{\Delta F}{F}\right| \approx \frac{2\Delta r}{r} = \frac{2 \cdot 0.01}{1} = 0.02 = 2\%$$

14 / 16

Summary

In this lecture we studied linear approximation of functions.

Remember:

- A function y = f(x) is approximated near x = a by a linear function L(x) = f(a) + f'(a)(x a).
- An increment Δy of a function y = f(x) is approximated
- by the differential of the function, $dy = f'(x)\Delta x$, namely, $\Delta y \approx dy$.

Comprehension checkpoint

• Explain why $\tan x \approx x$ for small x.

• Let y = f(x) be a differentiable function. Explain what are dy and Δy . Draw a picture!

• Use linearization to find an approximate value of $\sqrt[3]{8.03}$.

Give geometric interpretation of your calculations.