Linearization

Objectives 2
Linear approximation 3
Linearization 4
Examples of linearization 5
Examples of linearizations 6
Approximate calculations 7
Approximate calculations 8
Approximation of functions 9
Linearization in terms of differentials 10
Δy and $d y$ 11
Calculations with differentials 12
Calculations with differentials 13
Coulomb's law 14
Summary 15
Comprehension checkpoint 16

Objectives

In the coming lectures, we will study applications of the derivative:

- Linear approximation
- Analysis of functions
- Implicit differentiation
- Limits of indeterminate forms (l'Hôpital's rule)
- Related rates problems
- Optimization problems

In this lecture, we will discuss

- Linear approximation of functions and its applications.

Linear approximation

In applications, we may encounter difficulties in finding exact solutions to the problems.
Often approximate solutions are acceptable within some tolerance.
The simplest approximation of a function is given by a linear function.
In this section, we will study how a differentiable function may be approximated by a linear function.
We have already seen that the tangent line goes very close to the graph of the function.

The tangent line describes the behavior of the function near the point of tangency better than any other line.

It makes sense to use the tangent line as
a linear approximation to the graph.

Linearization

Let f be a function differentiable at the point $x=a$. The equation of the tangent line to the graph of f at the point $x=a$ is $y=f(a)+f^{\prime}(a)(x-a)$.

Definition. The linearization, or linear approximation, of the function f near point $x=a$ is the linear function $L(x)=f(a)+f^{\prime}(a)(x-a)$.
$f(x) \approx L(x)$ near $x=a$.

Examples of linearization

Example 1. Find the linear approximation to $f(x)=\sin x$ near $x=0$.
Solution. The linear approximation is the function $L(x)=f(a)+f^{\prime}(a)(x-a)$,
where $f(x)=\sin x$ and $a=0$.
Since $f^{\prime}(0)=\left.f^{\prime}(x)\right|_{x=0}=\left.(\sin x)^{\prime}\right|_{x=0}=\left.\cos x\right|_{x=0}=\cos 0=1$ and
$f(0)=\sin 0=0$, we find
$L(x)=0+1 \cdot(x-0) \Longleftrightarrow L(x)=x$.
The linear function approximating $f(x)=\sin x$ near $x=0$ is $L(x)=x$:

We write $\sin x \approx x$ for small x.

Examples of linearizations

Example 2. Find the linear approximations to $f(x)=\sqrt{x}$ near $x=1$ and $x=4$.
Solution. $f^{\prime}(x)=(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$. So $f^{\prime}(1)=\frac{1}{2}, f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$.
The linearization near $x=1$ is
$L(x)=f(1)+f^{\prime}(1)(x-1) \Longleftrightarrow L(x)=1+\frac{1}{2}(x-1) \Longleftrightarrow L(x)=\frac{x}{2}+\frac{1}{2}$.
The linearization near $x=4$ is
$L(x)=f(4)+f^{\prime}(4)(x-4) \Longleftrightarrow L(x)=2+\frac{1}{4}(x-4) \Longleftrightarrow L(x)=\frac{x}{4}+1$.

Approximate calculations

Example 3. Use linearization to find an approximate value for $\frac{1}{1.99}$.
Is this approximation an overestimate or an underestimate?
Solution. We can easily find the value of $\frac{1}{2}$, and since 1.99 is near 2 , we may use the linear approximation $L(x)=f(a)+f^{\prime}(a)(x-a)$ for $f(x)=\frac{1}{x}$ and $a=2$. Do the math:
$f^{\prime}(2)=\left.f^{\prime}(x)\right|_{x=2}=\left.\left(\frac{1}{x}\right)^{\prime}\right|_{x=2}=-\left.\frac{1}{x^{2}}\right|_{x=2}=-\frac{1}{4}$. Since $f(2)=\frac{1}{2}$, we have
$L(x)=\frac{1}{2}-\frac{1}{4}(x-2)$. Leave this formula as is, without simplifications.
$\frac{1}{1.99}=f(1.99) \approx L(1.99)=\frac{1}{2}-\frac{1}{4}(1.99-2)=0.5+\frac{0.01}{4}=0.5+0.0025=0.5025$

Approximate calculations

Now we have to answer the question:
whether the obtained approximation is an overestimate or an underestimate, that is,
Is the approximation 0.5025 greater than or less than the true value of $\frac{1}{1.99}$?

The tangent line is below the graph of the function,
therefore, the approximate value, 0.5025 , is less than the actual value of $\frac{1}{1.99}$.
By calculator: $1 / 1.99=0.502512 \ldots \quad$ Linearization gave four correct decimals!

Approximation of functions

Example. Show that $\sqrt[5]{1+x} \approx 1+\frac{x}{5}$ for small x.
Solution. Consider the function $f(x)=\sqrt[5]{1+x}$. It is differentiable at $x=0$, therefore, by linearization,
$f(x) \approx L(x)=f(0)+f^{\prime}(0)(x-0) \quad$ for x near 0.
Since $f^{\prime}(x)=\frac{d}{d x}(1+x)^{1 / 5}=\frac{1}{5}(1+x)^{-4 / 5}$, we have $f^{\prime}(0)=\frac{1}{5}$ and
$f(x) \approx L(x)=f(0)+f^{\prime}(0)(x-0)=1+\frac{1}{5} x=1+\frac{x}{5}$, as required.

Linearization in terms of differentials

Let $y=f(x)$ be a function differentiable at the point $x=a$.
According to the linearization formula,
$f(x) \approx f(a)+f^{\prime}(a)(x-a)$ for all x near a, or, equivalently,
$f(x)-f(a) \approx f^{\prime}(a)(x-a)$. Let $\Delta x=x-a$. Then
$f(a+\Delta x)-f(a) \approx f^{\prime}(a) \Delta x$. Rewrite this formula in terms of x instead of a :
$f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x$. Let $\Delta y=f(x+\Delta x)-f(x)$. Then
$\Delta y \approx f^{\prime}(x) \Delta x \Longleftrightarrow \Delta y \approx \frac{d y}{d x} \Delta x$.
Define the differential of the function as $d y=\frac{d y}{d x} \Delta x$. Then

$$
\Delta y \approx \frac{d y}{d x} \Delta x \Longleftrightarrow \Delta y \approx d y
$$

the increment (change) of the function \approx the differential of the function.

Δy and $d y$

$\Delta y=f(x+\Delta x)-f(x), \quad d y=f^{\prime}(x) \Delta x$
The smaller Δx is, the better the approximation $\Delta y \approx d y$.

Calculations with differentials

Example 1. A point moves along a straight line according the law $s(t)=5 t^{2}$, where t is time in seconds and $s(t)$ is the distance from the origin, in meters.
At time moment $t=2 \mathrm{sec}$, calculate the displacement Δs and the differential $d s$ over the time intervals a) $\Delta t=1 \mathrm{sec} \quad$ b) $\Delta t=0.1 \mathrm{sec}$.
Solution.

The displacement is $\Delta s=s(t+\Delta t)-s(t)$. It depends on t and Δt.
The differential is $d s=s^{\prime}(t) \Delta t$. It also depends on t and Δt.
a) For $t=2$ and $\Delta t=1, \Delta s=s(2+1)-s(2)=s(3)-s(2)=5 \cdot 3^{2}-5 \cdot 2^{2}=5(9-4)=25(\mathrm{~m})$ $d s=10 t \Delta t=10 \cdot 2 \cdot 1=20(\mathrm{~m})$
b) For $t=2$ and $\Delta t=0.1, \Delta s=s(2+0.1)-s(2)=s(2.1)-s(2)=5 \cdot(2.1)^{2}-5 \cdot 2^{2}=5(4.41-4)=2.05$ (m)
$d s=10 t \Delta t=10 \cdot 2 \cdot 0.1=2(\mathrm{~m})$. By linearization, $\Delta s \approx d s$, so for $\Delta t=1,25 \approx 20$ and for $\Delta t=0.1$, $2.05 \approx 2$.

4 The smaller Δt is, the better the approximation.

Calculations with differentials

Example 2. A spherical balloon inflates so that its radius increases from 5 cm to 5.4 cm . By approximately how much does the volume increase?
Solution. The volume V of a ball of radius r is $V=\frac{4}{3} \pi r^{3}$.
The increase of volume from $r=5$ to $r+\Delta r=5.4(\Delta r=0.4)$ is
$\Delta V=V(r+\Delta r)-V(r)=V(5.4)-V(5)$.
By linearization, $\Delta V \approx d V=V^{\prime}(r) \Delta r=4 \pi r^{2} \Delta r$.
When $r=5$ and $\Delta r=0.4$, we get
$\Delta V \approx 4 \pi \cdot 5^{2} \cdot 0.4=40 \pi \approx 125.7 \mathrm{~cm}^{3}$.

Coulomb's law

According to the Coulomb's law, the electrostatic force F between two charges q_{1} and q_{2} located at a distance r from each other, is given by $F=k \frac{q_{1} q_{2}}{r^{2}}$, where k is Coulomb's constant.
If the distance between the charges was measured to be 1 m with an error of at most 1 cm , what is the relative error in the calculation of the electrostatic force?
Solution. The relative error is $\left|\frac{\Delta F}{F}\right|$.
By linearization, $\Delta F \approx d F=-2 k \frac{q_{1} q_{2}}{r^{3}} \Delta r$, therefore

$$
\left|\frac{\Delta F}{F}\right| \approx\left|\frac{-2 k \frac{q_{1} q_{2}}{r^{3}} \Delta r}{k \frac{q_{1} q_{2}}{r^{2}}}\right|=\frac{2 \Delta r}{r}
$$

We are given $r=1 \mathrm{~m}$ and $\Delta r=1 \mathrm{~cm}=0.01 \mathrm{~m}$, so

$$
\left|\frac{\Delta F}{F}\right| \approx \frac{2 \Delta r}{r}=\frac{2 \cdot 0.01}{1}=0.02=2 \%
$$

Summary

In this lecture we studied linear approximation of functions.
Remember:

- A function $y=f(x)$ is approximated near $x=a$ by a linear function $L(x)=f(a)+f^{\prime}(a)(x-a)$.
- An increment Δy of a function $y=f(x)$ is approximated
by the differential of the function, $d y=f^{\prime}(x) \Delta x$, namely, $\Delta y \approx d y$.

Comprehension checkpoint

- Explain why $\tan x \approx x$ for small x.
- Let $y=f(x)$ be a differentiable function. Explain what are $d y$ and Δy. Draw a picture!
- Use linearizarion to find an approximate value of $\sqrt[3]{8.03}$.

Give geometric interpretation of your calculations.

