
Lecture 16

Linearization

Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Linear approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Examples of linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Examples of linearizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Approximate calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Approximate calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Approximation of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Linearization in terms of differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
∆y and dy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Calculations with differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Calculations with differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Coulomb’s law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Comprehension checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



Objectives

In the coming lectures, we will study applications of the derivative:

• Linear approximation

• Analysis of functions

• Implicit differentiation

• Limits of indeterminate forms (l’Hôpital’s rule)

• Related rates problems

• Optimization problems

In this lecture, we will discuss

• Linear approximation of functions and its applications.

2 / 16

Linear approximation

In applications, we may encounter difficulties in finding exact solutions to the problems.
Often approximate solutions are acceptable within some tolerance.
The simplest approximation of a function is given by a linear function.

In this section, we will study how a differentiable function may be approximated by a linear function.

We have already seen that the tangent line
goes very close to the graph of the function.

The tangent line describes the behavior of
the function near the point of tangency
better than any other line.

It makes sense to use the tangent line as
a linear approximation to the graph. x

y y = f(x)

ta
ng
en
t
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Linearization

Let f be a function differentiable at the point x = a . The equation of the tangent line
to the graph of f at the point x = a is y = f(a) + f ′(a)(x− a) .

x

y y = f(x)

y
=
f
(a
)
+
f
′ (a

)(
x
−

a
)

f(a)

a

Definition. The linearization, or linear approximation, of the function f near point x = a

is the linear function L(x) = f(a) + f ′(a)(x− a) .

f(x) ≈ L(x) near x = a .
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Examples of linearization

Example 1. Find the linear approximation to f(x) = sinx near x = 0 .

Solution. The linear approximation is the function L(x) = f(a) + f ′(a)(x− a) ,
where f(x) = sinx and a = 0 .

Since f ′(0) = f ′(x)
∣

∣

∣

x=0
= (sinx)′

∣

∣

∣

x=0
= cos x

∣

∣

∣

x=0
= cos 0 = 1 and

f(0) = sin 0 = 0 , we find

L(x) = 0 + 1 · (x− 0) ⇐⇒ L(x) = x .

The linear function approximating f(x) = sinx near x = 0 is L(x) = x :

x

y y = L(x)

y = sinx

We write sinx ≈ x for small x .
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Examples of linearizations

Example 2. Find the linear approximations to f(x) =
√
x near x = 1 and x = 4 .

Solution. f ′(x) = (
√
x)′ =

1

2
√
x
. So f ′(1) =

1

2
, f ′(4) =

1

2
√
4
=

1

4
.

The linearization near x = 1 is

L(x) = f(1) + f ′(1)(x− 1) ⇐⇒ L(x) = 1 +
1

2
(x− 1) ⇐⇒ L(x) =

x

2
+

1

2
.

The linearization near x = 4 is

L(x) = f(4) + f ′(4)(x− 4) ⇐⇒ L(x) = 2 +
1

4
(x− 4) ⇐⇒ L(x) =

x

4
+ 1 .

x

y y =
√
x

1 4

1

2
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Approximate calculations

Example 3. Use linearization to find an approximate value for
1

1.99
.

Is this approximation an overestimate or an underestimate?

Solution. We can easily find the value of
1

2
, and since 1.99 is near 2 ,

we may use the linear approximation L(x) = f(a) + f ′(a)(x− a) for f(x) =
1

x
and a = 2 .

Do the math:

f ′(2) = f ′(x)
∣

∣

∣

x=2
=

(

1

x

)′ ∣
∣

∣

x=2
= −

1

x2

∣

∣

∣

x=2
= −

1

4
. Since f(2) =

1

2
, we have

L(x) =
1

2
−

1

4
(x− 2) . Leave this formula as is, without simplifications.

1

1.99
= f(1.99) ≈ L(1.99) =

1

2
−

1

4
(1.99− 2) = 0.5 +

0.01

4
= 0.5 + 0.0025 = 0.5025
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Approximate calculations

Now we have to answer the question:
whether the obtained approximation is an overestimate or an underestimate, that is,
Is the approximation 0.5025 greater than or less than the true value of

1

1.99
?

x

y
y =

1

x

2

y = L(x)

x

y =
1

x

21.99

1

1.99 .5025

The tangent line is below the graph of the function,

therefore, the approximate value, 0.5025, is less than the actual value of
1

1.99
.

By calculator: 1/1.99 = 0.502512... Linearization gave four correct decimals!
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Approximation of functions

Example. Show that 5
√
1 + x ≈ 1 +

x

5
for small x .

Solution. Consider the function f(x) = 5
√
1 + x . It is differentiable at x = 0 ,

therefore, by linearization,

f(x) ≈ L(x) = f(0) + f ′(0)(x − 0) for x near 0 .

Since f ′(x) =
d

dx
(1 + x)1/5 =

1

5
(1 + x)−4/5 , we have f ′(0) =

1

5
and

f(x) ≈ L(x) = f(0) + f ′(0)(x − 0) = 1 +
1

5
x = 1 +

x

5
, as required.

x

y

y = 5
√
1 + x

y = x/5 + 1

−1 0
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Linearization in terms of differentials

Let y = f(x) be a function differentiable at the point x = a .
According to the linearization formula,

f(x) ≈ f(a) + f ′(a)(x− a) for all x near a , or, equivalently,

f(x)− f(a) ≈ f ′(a)(x− a) . Let ∆x = x− a . Then

f(a+∆x)− f(a) ≈ f ′(a)∆x . Rewrite this formula in terms of x instead of a :

f(x+∆x)− f(x) ≈ f ′(x)∆x . Let ∆y = f(x+∆x)− f(x) . Then

∆y ≈ f ′(x)∆x ⇐⇒ ∆y ≈
dy

dx
∆x.

Define the differential of the function as dy =
dy

dx
∆x. Then

∆y ≈
dy

dx
∆x ⇐⇒ ∆y ≈ dy

the increment (change) of the function ≈ the differential of the function.
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∆y and dy

x

y

f(x)

x

y = f(x)y = f(x)

x+∆x

f(x+∆x)

dy
∆y

L(x+∆x)
∆y ≈ dy

∆y = f(x+∆x)− f(x), dy = f ′(x)∆x

The smaller ∆x is, the better the approximation ∆y ≈ dy .
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Calculations with differentials

Example 1. A point moves along a straight line according the law s(t) = 5t2 ,
where t is time in seconds and s(t) is the distance from the origin, in meters.

At time moment t = 2 sec, calculate the displacement ∆s and the differential ds
over the time intervals a) ∆t = 1 sec b) ∆t = 0.1 sec.

Solution.

t
0 s(t) s(t+∆t)

∆s

The displacement is ∆s = s(t+∆t)− s(t) . It depends on t and ∆t .
The differential is ds = s′(t)∆t . It also depends on t and ∆t .
a) For t = 2 and ∆t = 1 , ∆s = s(2 + 1)− s(2) = s(3)− s(2) = 5 · 32 − 5 · 22 = 5(9− 4) = 25 (m)

ds = 10t∆t = 10 · 2 · 1 = 20 (m)
b) For t = 2 and ∆t = 0.1 , ∆s = s(2 + 0.1)− s(2) = s(2.1)− s(2) = 5 · (2.1)2 − 5 · 22 = 5(4.41− 4) = 2.05
(m)

ds = 10t∆t = 10 · 2 · 0.1 = 2 (m). By linearization, ∆s ≈ ds , so for ∆t = 1 , 25 ≈ 20 and for ∆t = 0.1 ,
2.05 ≈ 2 .

☞ The smaller ∆t is, the better the approximation.
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Calculations with differentials

Example 2. A spherical balloon inflates so that its radius increases from 5 cm to 5.4 cm.
By approximately how much does the volume increase?

Solution. The volume V of a ball of radius r is V =
4

3
πr3 .

The increase of volume from r = 5 to r +∆r = 5.4 (∆r = 0.4 ) is

∆V = V (r +∆r)− V (r) = V (5.4) − V (5) .

By linearization, ∆V ≈ dV = V ′(r)∆r = 4πr2∆r .

When r = 5 and ∆r = 0.4 , we get

∆V ≈ 4π · 52 · 0.4 = 40π ≈ 125.7 cm3.
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Coulomb’s law

According to the Coulomb’s law, the electrostatic force F between two charges q1 and q2 located at a

distance r from each other, is given by F = k
q1q2
r2

, where k is Coulomb’s constant.

If the distance between the charges was measured to be 1m with an error of at most 1cm , what is the
relative error in the calculation of the electrostatic force?

Solution.The relative error is
∣

∣

∣

∆F

F

∣

∣

∣
.

By linearization, ∆F ≈ dF = −2k
q1q2
r3

∆r , therefore

∣

∣

∣

∆F

F

∣

∣

∣
≈

∣

∣

∣

∣

∣

−2k
q1q2
r3

∆r

k
q1q2
r2

∣

∣

∣

∣

∣

=
2∆r

r
.

We are given r = 1m and ∆r = 1cm = 0.01m , so
∣

∣

∣

∆F

F

∣

∣

∣
≈

2∆r

r
=

2 · 0.01

1
= 0.02 = 2%
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Summary

In this lecture we studied linear approximation of functions.

Remember:

• A function y = f(x) is approximated near x = a by a linear function L(x) = f(a)+ f ′(a)(x− a).

• An increment ∆y of a function y = f(x) is approximated
by the differential of the function, dy = f ′(x)∆x , namely, ∆y ≈ dy.
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Comprehension checkpoint

• Explain why tanx ≈ x for small x.

• Let y = f(x) be a differentiable function. Explain what are dy and ∆y.
Draw a picture!

• Use linearizarion to find an approximate value of 3
√
8.03.

Give geometric interpretation of your calculations.
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