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Objectives

In this lecture we continue to develop tools for efficient computation of derivatives.
Namely, we

• calculate the derivative of exponential functions and

• establish the chain rule for differentiation of a composition of functions.

Also, we discuss the application of differentiation to differential equations.
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The chain rule

The chain rule tells us how to differentiate a composition of functions.

Theorem (the chain rule).
If g is differentiable at x and f is differentiable at g(x) ,
then f ◦ g is differentiable at x and (f ◦ g)′(x) = f ′(g(x))g′(x) .

In Leibniz notation: let u = g(x) and y = f(u) . Then
dy

dx
=

dy

du
· du
dx

.

More precisely, to indicate the point each derivative is evaluated at,
dy

dx
(x) =

dy

du
(u(x)) · du

dx
(x)

If y depends on u

and u depends on x ,
then y depends on x and

dy

dx
=

dy

du

du

dx

y

u

x

y = f(u)

u = g(x)

y = f(g(x))
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Sketch of a proof

By the definition of the derivative,

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u
· ∆u

∆x
↑

if ∆u 6= 0

= lim
∆x→0

∆y

∆u
· lim
∆x→0

∆u

∆x
= lim

∆u→0

∆y

∆u
· lim
∆x→0

∆u

∆x
=

dy

du

du

dx
.

It may happen that ∆u = g(x +∆x)− g(x) vanishes.
Then the reasoning above is not valid, since we can’t divide by 0 .

But the proof may be adjusted to avoid this obstacle. See the textbook for the details.
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Chain rule: Example 1

Example 1. Differentiate the function f(x) = (x4 + 3)10 .

Solution. The function f is a composition of two functions: g(x) = x4 + 3 and f(u) = u10 :

x
g−→ x4 + 3

f−→ (x4 + 3)10 .

Let u = g(x) = x4 + 3 and y = f(g(x)) = f(u) = u10 .

y

u

x

y = u10

u = x4 + 3

y = (x4 + 3)10

By the chain rule,
dy

dx
=

dy

du

du

dx
=

d(u10)

du

d(x4 + 3)

dx
= 10u9(4x3)

= 10(x4 + 3)9(4x3) = 40x3(x4 + 3)9.
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Chain rule: Example 1

We have got that
d

dx
(x4 + 3)10 = 40x3(x4 + 3)9 .

Remark. Usually, we don’t use extra letter u while differentiating.

Let us write the chain rule in terms of inner and outer functions:

( f
︸︷︷︸
outer
function

( g
︸︷︷︸
inner
function

(x)))′ = f ′(g(x))
︸ ︷︷ ︸

derivative

of outer
function

g′(x)
︸ ︷︷ ︸

derivative

of inner
function

The differentiation is written as follows:

d

dx
(x4 + 3)10 = 10(x4 + 3)9

︸ ︷︷ ︸

derivative

of outer
function

· (4x3)
︸ ︷︷ ︸

derivative

of inner
function

= 40x3(x4 + 3)9 . Or

d

dx
(x4 + 3)10 = 10(x4 + 3)9 · d

dx
(x4 + 3) = 10(x4 + 3)9(4x3) = 40x3(x4 + 3)9.
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Chain rule: Example 2

Example 2. Find the derivative of f(x) =
√
x2 + 1 .

Solution. f(x) =
√
x2 + 1 = (x2 + 1)

1

2 . Therefore,

d

dx
(x2 + 1)

1

2 =
1

2
(x2 + 1)−

1

2

︸ ︷︷ ︸

derivative

of outer

function

· (2x)
︸︷︷︸

derivative

of inner

function

=
x√

x2 + 1
.

Remark. One can write the differentiation as follows:

d

dx
(x2 + 1)

1

2 =
1

2
(x2 + 1)−

1

2

d

dx
(x2 + 1) =

1

2
(x2 + 1)−

1

2 (2x)

=
x√

x2 + 1
.
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The chain rule for more than two functions

For a composition of three functions:

d

dx
f(g(h(x))) = f ′(g(h(x)))g′(h(x))h′(x) .

In Leibniz notation: if y = h(x), z = g(y), w = f(z) , then

dw

dx
(x) =

dw

dz
(z(y(x)))

dz

dy
(y(x))

dy

dx
(x), or, in short,

dw

dx
=

dw

dz

dz

dy

dy

dx
.

Similar formulas are valid for any number of composed functions.

Example. Find the derivative of f(x) = ((x2 + 1)3 + 2)5 .

Solution.
d

dx
((x2 + 1)3 + 2)5 = 5((x2 + 1)3 + 2)4 · d

dx
((x2 + 1)3 + 2)

= 5((x2 + 1)3 + 2)4 · 3(x2 + 1)2 · d

dx
(x2 + 1)

= 5((x2 + 1)3 + 2)4 · 3(x2 + 1)2 · (2x) = 30x(x2 + 1)2((x2 + 1)3 + 2)4.
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The derivative of e
x

The number e was defined as the base of the exponential function f(x) = ax

whose graph has the tangent line at (0, 1) with slope 1 .

x

y y = ex

1

ta
ng
en
t

of
sl
op
e
1

45◦

The slope of this tangent line is the value of the derivative of y = ex at x = 0 :

y′(0) =
d

dx
ex
∣
∣
∣
x=0

= 1 . How can we calculate the derivative of y = ex at any other point x ?
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The derivative of e
x

d

dx
ex = lim

h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= lim

h→0

ex(eh − 1)

h
= lim

h→0
ex · lim

h→0

eh − 1

h

= lim
h→0

ex · lim
h→0

e0+h − e0

h
= ex · d

dx
ex
∣
∣
∣
x=0

︸ ︷︷ ︸

=1
by the definition of number e

= ex .

d

dx
ex = ex The function is its own derivative!

Example 1. Find the derivative of f(x) = ex
2+3x .

Solution. The function f(x) is a composition of two functions, so we use the chain rule:

f ′(x) =
d

dx
ex

2+3x = ex
2+3x d

dx
(x2 + 3x) = ex

2+3x(2x+ 3).
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The derivative of e
x

Example 2. Differentiate the function f(x) = x3e2x .
Solution. The function is a product of two functions, so we use the product rule.

f ′(x) =
d

dx
(x3e2x) =

d

dx
(x3)e2x + x3

d

dx
e2x = 3x2e2x + x3(e2x · 2) = (3x2 + 2x3)e2x .

Example 3. Find the equation of the line that is tangent to graph of y = ex

and passes through the origin.
Solution. We are looking for a line through the origin that is tangent to y = ex .

x

y

ea

a

y = ex

The equation of the tangent line to the graph of y = f(x)
at the point (a, f(a)) is y − f(a) = f ′(a)(x − a) .

Since f(a) = ea and f ′(a) =
d

dx
ex
∣
∣
∣
x=a

= ex
∣
∣
∣
x=a

= ea ,

the equation of the tangent is y − ea = ea(x− a) .
Since the tangent must passe through the origin,
the pair (x, y) = (0, 0) must satisfy the equation of the line:

0− ea = ea(0− a) .
From which we get −ea = −aea or, equivalently, (1 − a)ea = 0 . Since ea 6= 0 , this means a = 1 .

Therefore, the equation of the tangent line is y − e = e(x− 1) , or, equivalently, y = ex .
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The derivative of a
x

Let us calculate the derivative of an arbitrary exponential function ax , where a > 0.

By the properties of the logarithmic function, ax = eln(a
x) = ex lna . Observe that ln a is a constant.

Differentiate ax by the chain rule:

d

dx
ax =

d

dx
ex ln a = ex ln a d

dx
(x ln a) = ex lna · (ln a) = ax ln a .

d

dx
ax = ax ln a

B Warning: Don’t mix up
the power function y = xa and the exponential function y = ax .

They are very different functions and have different derivatives:

d

dx
xa = axa−1 ,

d

dx
ax = ax ln a .
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Examples

Example 1. Find the derivative of f(x) = x3 + 3x .

Solution. f ′(x) =
d

dx
x3 +

d

dx
3x = 3x2 + 3x ln 3 .

☞ Don’t confuse power and exponential functions!

Example 2. Find the derivative of f(x) =
1

2x2−x
.

Solution. f(x) =
1

2x2−x
= 2−x2+x .

f ′(x) =
d

dx
2−x2+x = 2−x2+x(ln 2)

d

dx
(−x2 + x) = 2−x2+x(ln 2)(−2x+ 1)

= (−2x+ 1)2−x2+x ln 2 .
Example 3. Find the derivative of f(x) = 21/x

Solution. f ′(x) =
d

dx
21/x = 21/x(ln 2)

d

dx

1

x
= 21/x(ln 2)(− 1

x2
)

= −21/x

x2
ln 2.
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Differential equations

A differential equation (DE) is an equation involving derivatives of an unknown function.

A solution of a differential equation is a function satisfying the equation.

Example 1. y′ = 3x2 − 1 is a differential equation. It says that the derivative y′ of an unknown
function y = y(x) is equal to 3x2 − 1.

The function y = x3 − x is a solution of this DE, since y′ =
d

dx
(x3 − x) = 3x2 − 1 .

Actually, this DE has infinitely many solutions:
any function y(x) = x3 − x+ C , where C is a constant, is a solution.

Indeed, y′(x) =
d

dx
(x3 − x+ C) = 3x2 − 1 .

In fact, these are all the solution of this DE.
The solution y(x) = x3 − x+ C , where C is an arbitrary constant,

is called the general solution of the DE.
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Solutions of differential equations

Example 2. Show that the function y = −x3 +
1

x
is a solution of the differential equation

x2y′′ − xy′ − 3y = 0 .

Solution. We have to show that the given function y and its derivatives y′, y′′ satisfy the differential
equation. For this, find y′ and y′′ :

y′ =
d

dx

(

−x3 +
1

x

)

= −3x2 − 1

x2
, y′′ = (y′)′ =

d

dx

(

−3x2 − 1

x2

)

= −6x+
2

x3
.

Substitute y, y′, y′′ into the left hand side of the equation:

x2y′′ − xy′ − 3y = x2

(

−6x+
2

x3

)

︸ ︷︷ ︸

y′′

−x

(

−3x2 − 1

x2

)

︸ ︷︷ ︸

y′

−3

(

−x3 +
1

x

)

︸ ︷︷ ︸
y

= −6x3 +
2

x
+ 3x3 +

1

x
+ 3x3 − 3

x
= 0 X

We see that the function y = −x3 +
1

x
satisfies the differential equation.

Therefore, it is a solution of this DE.
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Summary

In this lecture, we learned

• how to differentiate a composition of several functions using the chain rule

• what the derivatives of the exponential functions are:

d

dx
ax = ax ln a, in particular,

d

dx
ex = ex

• an application of differentiation: differential equations and their solutions.
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Comprehension checkpoint

• Present the function y = 2(3
x) as a composition of two functions.

Find the derivative
d

dx
2(3

x).

• Present the function y = ((5x3 + 4)2 + 1)4 as a composition of several functions. Find the

derivative
d

dx
((5x3 + 4)2 + 1)4.

• Find the derivatives
d

dx

√
2
x
and

d

dx
x
√
2.

• Show that the function y = xex is a solution of the differential equation y′′ − 2y′ + y = 0.
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