Limit and Continuity

Objectives 2
What are limits about? 3
The definition of limit 4
One-sided limits. 5
Two important facts 6
Reading limits from a graph 7
When the limit does not exist 8
Properties of limits (limit laws) 9
Properties of limits (limit laws) 10
Simplest examples 11
Continuity 12
Discontinuity 13
Elementary functions are continuous where defined 14
Making a piecewise-defined function continuous 15
Types of discontinuities 16
Types of discontinuities 17
The intermediate value theorem 18
An application of the intermediate value theorem 19
Summary 20
Comprehension check 21

Objectives

In this lecture, we'll discuss the following topics:

- The definition of limit
- Properties of limits
- Continuity
- The intermediate value theorem

What are limits about?

Calculus studies functions.
How do functions behave? What is behavior of a function overall?
What is the local behavior of a function?
The notion of limit describes the behavior of a function near a point, that is, its local behavior.
Example. What is behavior of $f(x)=\left\{\begin{array}{l}x^{2}, x \neq 2 \\ 8, \\ 8=2\end{array}\right.$ near the point $x=2$?

Notice that when x is near 2 ,
but is not equal to 2 ,
then $f(x)$ is near 4 .
We need to make this more precise.

The definition of limit

Definition (informal). Let $f(x)$ be a function and a be a number.
A number L is called the limit of f as x approaches a,
if $f(x)$ can be made arbitrary close to L by choosing x sufficiently close to a (but not equal to a).
Notation: $\lim _{x \rightarrow a} f(x)=L$ or $f(x) \underset{x \rightarrow a}{\longrightarrow} L$.

Remarks.

1. $f(a)$, the value of the function f at a, does not enter into the definition of the limit.
2. Why is the definition informal?

The expressions "arbitrarily close" and "sufficiently close" are imprecise.
Loosely speaking,
$f(x)$ gets closer and closer to L as x gets closer and closer to a.
3. You will learn a precise definition of limit when you study Analysis.

One-sided limits

- Left-hand limit:
$\lim _{x \rightarrow a^{-}} f(x)=L$ means that $f(x)$ is arbitrarily close to L whenever x is sufficiently close to a and $x<a$.

The limit of f when x approaches a from the left is equal to L.

- Right-hand limit:
$\lim _{x \rightarrow a^{+}} f(x)=L$ means that $f(x)$ is arbitrarily close to L whenever x is sufficiently close to a and $x>a$.

The limit of f when x approaches a from the right is equal to L.

Two important facts

Theorem 1. If a limit exists, then it is unique.
Theorem 2. The limit of a function exists if and only if
both left- and right-hand limits exist and are equal:
$\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$.

Reading limits from a graph

$\lim _{x \rightarrow 2} f(x)=3, \quad \lim _{x \rightarrow 2^{-}} f(x)=3, \quad \lim _{x \rightarrow 2^{+}} f(x)=3$
$\lim _{x \rightarrow 1^{+}} f(x)=2, \quad \lim _{x \rightarrow 1^{-}} f(x)=4, \lim _{x \rightarrow 1} f(x)$ doesn't exist
$\lim _{x \rightarrow-1^{+}} f(x)=1, \quad \lim _{x \rightarrow-1^{-}} f(x)=1, \quad \lim _{x \rightarrow-1} f(x)=1$.

When the limit does not exist

Problem. Find the limit $\lim _{x \rightarrow 0} \frac{|x|}{x}$.
Solution. Since $|x|=\left\{\begin{array}{ll}x, & x \geq 0 \\ -x, & x<0,\end{array}\right.$ we get $\frac{|x|}{x}=\left\{\begin{array}{ll}\frac{x}{x}, & x>0 \\ \frac{-x}{x}, & x<0\end{array}= \begin{cases}1, & x>0 \\ -1, & x<0 .\end{cases}\right.$

Here is the graph of our function $y=\frac{|x|}{x}$:

We see that $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} 1=1$, and $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}}(-1)=-1$.
So the right- and left-hand limits do not coincide.
Therefore, $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.

Properties of limits (limit laws)

The following limit laws will be proven in Analysis.
They are grouped here for reference.
Let $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Then

- Limit of a sum:

$$
\lim _{x \rightarrow a}(f(x)+g(x))=L+M
$$

- Limit of a difference: $\quad \lim _{x \rightarrow a}(f(x)-g(x))=L-M$
- Limit of a product: $\quad \lim _{x \rightarrow a} f(x) g(x)=L M$
- Limit of a multiple: $\quad \lim _{x \rightarrow a} c f(x)=c L$
- Limit of a quotient: $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad$ if $M \neq 0$

Properties of limits (limit laws)

- Limit of a composition:

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{y \rightarrow L} g(y)=M$, then $\lim _{x \rightarrow a} g(f(x))=M$.

- Inequality and limits:

If $f(x) \leq g(x)$ near a and $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$, then $L \leq M$.

- Limit of a constant function: $\lim _{x \rightarrow a} c=c$.
- Substitution of a number: $\lim _{x \rightarrow a} x=a$.
- Substitution of a function:

If $f(x)=g(x)$ for all $x \neq a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Simplest examples

Example 1. Calculate the limit $\lim _{x \rightarrow 1}(3 x+2)$.
Solution. $\lim _{x \rightarrow 1}(3 x+2)=\lim _{x \rightarrow 1}(3 x)+\lim _{x \rightarrow 1} 2=3 \lim _{x \rightarrow 1} x+2=3 \cdot 1+2=5$.

Example 2. Calculate the limit $\lim _{x \rightarrow \pi / 2} e^{\sin x}$.
Solution. We use the rule for the limit of a composition.
Since $\lim _{x \rightarrow \pi / 2} \sin x=\sin \frac{\pi}{2}=1$, and $\lim _{y \rightarrow 1} e^{y}=e^{1}=e$,
we have $\lim _{x \rightarrow \pi / 2} e^{\sin x}=e$.

Continuity

Definition. A function $f(x)$ is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$. f is continuous on an interval if $f(x)$ is continuous at all points of the interval.

Example 1.

This function is continuous at all points.
The graph of a continuous function can be drawn
without taking the pen off the paper.

Example 2.

The function $f(x)=\left\{\begin{array}{ll}1, & x \geq 0 \\ -1, & x<0\end{array} \quad\right.$ is not continuous at 0 ,
since $\lim _{x \rightarrow 0} f(x)$ doesn't exist.
One says that $f(x)$ has a discontinuity at 0 .

Discontinuity

A function is discontinuous at a point, if it is not continuous at that point.

Example 1.

This function is discontinuous at point a,

$$
\text { since } \lim _{x \rightarrow a} f(x) \text { doesn't exist. }
$$

The graph of a discontinuous function can't be drawn without taking the pen off the paper.

Example 2.

This function is discontinuous at point a.
The limit $\lim _{x \rightarrow a} f(x)$ exists,
but is not equal to the value of f at a :
$\lim _{x \rightarrow a} f(x)=L \neq f(a)$.

Elementary functions are continuous where defined

Theorem. All elementary functions
(power, exponential, logarithmic, trigonometric, inverse trigonometric, and their sums, differences, products, quotients, and compositions) are continuous where they are defined. Therefore,
limits of elementary functions can be evaluated by direct substitution.
Example 1. Where is $f(x)=\frac{\sqrt{x}}{x-1}$ continuous? Find $\lim _{x \rightarrow 4} \frac{\sqrt{x}}{x-1}$.
Solution. $f(x)$ is an elementary function, so it is continuous where it is defined.
The domain of f is the set of all x such that $x \geq 0, x \neq 1$.
Therefore, f is continuous on $[0,1) \cup(1, \infty)$.
Since $x=4$ is in the domain, f is continuous at $x=4$ and the limit can be calculated by direct substitution:
$\lim _{x \rightarrow 4} \frac{\sqrt{x}}{x-1}=\frac{\sqrt{4}}{4-1}=\frac{2}{3}$.

Making a piecewise-defined function continuous

Example 2. Find the value of a constant a for which the function $f(x)=\left\{\begin{array}{l}x^{2}-1, x \leq 2 \\ a x+4, x>2\end{array}\right.$ is continuous for all $x \in \mathbb{R}$.

Solution. For $x<2, f(x)=x^{2}-1$, so f is continuous for $x<2$.
For $x>2, f(x)=a x+4$, so f is continuous for $x>2$.
Therefore, $f(x)$ is continuous for all $x \neq 2$ regardless of a.
We have to choose a in such a way that $f(x)$ will also be continuous at $x=2$.
This will be the case if $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$. Since
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}-1\right)=x^{2}-\left.1\right|_{x=2}=3$ and
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(a x+4)=a x+\left.4\right|_{x=2}=2 a+4$,
we should have $3=2 a+4 \Longleftrightarrow a=-1 / 2$

Types of discontinuities

1. A function $f(x)$ has a removable discontinuity at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists, but is not equal to the value of the function at the point: $\lim _{x \rightarrow a} f(x) \neq f(a)$.

2. A function $f(x)$ has a jump discontinuity at $x=a$ if both one-sided limits exist but are not equal: $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$.

Types of discontinuities

3. A function $f(x)$ has an essential discontinuity at $x=a$ if one of one-sided limits does not exist.

For example, the function $f(x)=\left\{\begin{array}{l}\sin \frac{1}{x-1}, x<1 \\ (x-1)^{2}, x \geq 1\end{array}\right.$
has an essential discontinuity at $x=1$ since
$\lim _{x \rightarrow 1^{-}} f(x)$ does not exist. Notice that $\lim _{x \rightarrow 1^{+}} f(x)=0$:

The intermediate value theorem

Theorem. Let f be a continuous function on the closed interval $[a, b]$. Suppose $f(a) \neq f(b)$.
Then for any number N between $f(a)$ and $f(b)$
there exists $c \in(a, b)$ such that $f(c)=N$.

f must be continuous,
otherwise the theorem doesn't hold true:

An application of the intermediate value theorem

The intermediate value theorem may help in finding roots of equations.
Problem. Show that the equation $x^{3}-x-1=0$ has a root in the interval $[1,2]$.
Solution. We are going to apply the intermediate value theorem
to the continuous function $f(x)=x^{3}-x-1$ on the closed interval [1,2].
We calculate $f(1)$ and $f(2)$:

$$
f(1)=1^{3}-1-1=-1, \quad f(2)=2^{3}-2-1=5 .
$$

Since 0 is between -1 and 5 , the intermediate value theorem states that that there must be an number $c \in[1,2]$ such that $f(c)=0$. This number c is a root of the equation.

Summary

In this lecture we studied

- the limit of a function at a point: $\lim _{x \rightarrow a} f(x)$
- one-sided limit of a function at a point:

$$
\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x),
$$

- limit laws
- continuity of a function
- discontinuities and their types
- the intermediate value theorem

Comprehension check

- Is it true that if $\lim _{x \rightarrow 1} f(x)=2$ and $\lim _{x \rightarrow 1^{-}} f(x)=2$ then $\lim _{x \rightarrow 1^{+}} f(x)=2$?
- Sketch the graph of a function $y=f(x)$ having the following properties:
$\lim _{x \rightarrow 0} f(x)=1, \quad \lim _{x \rightarrow 2^{-}} f(x)=3, \quad \lim _{x \rightarrow 2^{+}} f(x)=-1$.
- Find the limit $\lim _{x \rightarrow 0} \ln (\cos x)$.
- Is the following reasoning correct:
$\lim _{x \rightarrow 0} \frac{x}{x}=\frac{0}{0}=0$?
- Draw the graph of the function $y=\frac{x}{x}$ and explain how to calculate $\lim _{x \rightarrow 0} \frac{x}{x}$.

