Lecture 5

Elementary Functions. Part 3

Objectives
Inverse functions
Exponential functions are monotonic
Logarithms as inverses of exponentials
Graphs of a logarithm function
The laws of logarithms
The natural logarithm
Trigonometric functions are not invertible
The sine function with a restricted domain 10
The inverse sine
The graph of the inverse sine function 12
The cosine function with a restricted domain
The inverse cosine
The graph of the inverse cosine
The inverse tangent
The graph of the inverse tangent
Warning
Summary
Comprehension checkpoint

Objectives

What are elementary functions?

Power, exponential, logarithmic, trigonometric, inverse trigonometric functions

and their sums, differences, products, quotients, and compositions.

In this lecture, we review

• logarithmic functions ($y = \log_a x$) as inverse for exponential functions $y = a^x$

• inverse trigonometric functions

 $(y = \arcsin x, y = \arccos x, y = \arctan x).$

Inverse functions

Recall that a function $f: D \to R$ with domain D and range Ris called *invertible* if there exists an *inverse* function $f^{-1}: R \to D$ with domain R and range D, which has the following properties: $f^{-1}(f(x)) = x$ for any $x \in D$ and $f(f^{-1}(y)) = y$ for any $y \in R$. In Lecture 4 we proved the following important result: If a function is *monotonic* on an interval

(that is, if it is strictly increasing or strictly decreasing on the interval), then the function is invertible on that interval.

We also showed that the graphs of a function and its inverse

are **symmetric** to each other about the line y = x.

The laws of logarithms				
The properties (laws) of logarithms follow from the properties (laws) of exponents.				
	Logarithm	Exponent		
	$\log_a 1 = 0$	$a^0 = 1$		
	$\log_a a = 1$	$a^1 = a$		
	$\log_a(xy) = \log_a x + \log_a y$	$a^{x+y} = a^x \cdot a^y$		
	$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$	$a^{x-y} = \frac{a^x}{a^y}$		
	$\log_a(x^b) = b \log_a x$	$(a^x)^y = a^{xy}$		
	$\log_a x = \frac{\log_b x}{\log_b a}$	$\left(a^{\frac{1}{y}}\right)^x = a^{\frac{x}{y}}$		

The inverse sine The function $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$, defined by the formula $f(x) = \sin x$ for each $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, increases on its domain. Therefore, it is invertible. The inverse is called the *inverse sine*, or *arcsine*. The inverse is denoted by $\arcsin(y)$. The domain of the arcsine is the range of the sine, that is, $\left[-1, 1\right]$. The range of the arcsine is the domain of the sine, that is, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. By the definition of inverse function, $\arcsin(\sin x) = x$ for any $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and $\sin(\arcsin y) = y$ for any $y \in [-1, 1]$.

The inverse cosine

The function $f:[0,\pi] \to [-1,1]$, defined by the formula $f(x) = \cos x$ for each $x \in [0,\pi]$, decreases on its domain. Therefore, it is invertible. The inverse is called the *inverse cosine*, or *arccosine*.

The inverse is denoted by $\arccos(y)$.

The domain of the arccosine is the range of the cosine, that is, [-1, 1]. The range of the arccosine is the domain of the cosine, that is, $[0, \pi]$.

By the definition of inverse function,

 $\arccos(\cos x) = x$ for any $x \in [0,\pi]$, and

 $\cos(\arccos y) = y$ for any $y \in [-1, 1]$.

14 / 20

The inverse tangent The function $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$, defined by the formula $f(x) = \tan x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, increases on its domain. Therefore, it is invertible. The inverse is called the *inverse tangent*, or *arctangent*. The inverse is denoted by $\arctan(y)$. The domain of the arctangent is the range of the tangent, that is, \mathbb{R} . The range of the arctangent is the domain of the tangent, that is, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. By the definition of inverse function, $\arctan(\tan x) = x$ for any $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and $\tan(\arctan y) = y$ for any $y \in \mathbb{R}$.

16 / 20

The graph of the inverse tangent

The graphs of a function and its inverse are symmetric about the line y = x. Therefore, the graph of $y = \arctan x$ is obtained from the graph of $y = \tan x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by reflection in the line y = x:

 $y = \tan x$

WarningIn some textbooks, the inverse trigonometric functions $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$,are denoted by $y = \sin^{-1} x$, $y = \cos^{-1} x$, $y = \tan^{-1} x$.This notation may cause confusion, because it is ambiguous:for example, $\sin^{-1} x$ may denote either the reciprocal of $\sin x$, that is $\frac{1}{\sin x}$,or the inverse sine, that is $\arcsin x$.But $\frac{1}{\sin x} \neq \arcsin x$.Image: To avoid possible confusion, use arc-notation for the inverse trigonometric functions.

18 / 20

Summary

In this lecture, we studied

- logarithms as inverses of exponentials
- graphs of logarithm functions
- laws of logarithms
- what the **natural logarithm** $y = \ln x$ is
- the inverse sine $y = \arcsin x$ and its domain, range and graph
- the inverse cosine $y = \arccos x$ and its domain, range and graph
- the inverse tangent $y = \arctan x$ and its domain, range and graph

Comprehension checkpoint

- Why is $e^{\ln x} = x$?
- Is it true that $\ln x^a = a \ln x$?
- What is the domain of the function $y = \ln x$?
- How does the graph of the inverse sine look like?
- Is it true that the domain on the inverse cosine is $[0,\pi]$?
- Is it true that $\arctan x$ is defined for all real x?
- What are the asymptotes of $y = \arctan x$?