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Objectives

In our first lecture, we discuss

• the definition of a function

• the domain and range of a function

• piecewise-defined functions

• even and odd functions

• increasing and decreasing functions.
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What is a function?

Loosely speaking, a function expresses the dependence of a quantity on another quantity.

The precise meaning of a function is given in the following definition:

Definition. Let D and C be sets of real numbers: D ⊂ R , C ⊂ R .
A function f from D to C is a rule

that assigns to each element in D exactly one element in C .

Notation. f : D −→ C

x 7→ f(x) or y = f(x) .

f : D
︸︷︷︸

domain

of f

−→ C
︸︷︷︸

codomain

of f

y
︸︷︷︸

dependent

variable

= f( x
︸︷︷︸

independent

variable

)
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Domain and range

For each number x in the domain D, the function f returns the number f(x) in the codomain
C.This number is called the value of f at x.

The set of all values of a function f is called the range of f.

The range is a subset of the codomain.

The graph of a function f is the set of ordered pairs {(x, f(x)) | x ∈ D}.
The graph of a function is a subset of R

2.

Example. Let f : [1, 5] −→ R be the function defined by f(x) = x2 − 4x.
Determine the domain, codomain and range of f. Draw the graph of f.

Solution. The domain is the interval [1, 5], the codomain is R .

The graph of f : [1, 5] −→ R is the set of all points {(x, y)} in the plane
such that x ∈ [1, 5] and y = x2 − 4x.

That is, the graph of f is a part of the parabola y = x2 − 4x, where x takes values in [1, 5] .
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Graph of a function

To draw the graph of y = f(x), we plot the parabola y = x2 − 4x :

x

y

41 5

domain

−3

5

−4

ra
n
ge

Restrict x to [1, 5],
and cut off
the corresponding piece of the parabola.
The range is [−4, 5].

Remember:
the domain appears on the x -axis,
the range appears on the y -axis.
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How to find the domain

Often the function is given by a single formula,

like y = x2 − 4x , or f(x) =
x+ 1

(x+ 2)(x− 3)
or f(x) =

√
x.

In such cases the domain is assumed to be the maximal set of x -values
for which the formula makes sense.

For example, for the function y = x2 − 4x , the domain is R ,
since the expression x2 − 4x is defined for all values of x .

For the function f(x) =
x+ 1

(x+ 2)(x− 3)
, the domain is

Rr {−2, 3} = (−∞,−2) ∪ (−2, 3) ∪ (3,∞) ,
since the formula makes sense for all x besides −2 and 3 .

The domain of the function f(x) =
√
x is [0,∞) ,

since the
√
x makes sense for all non-negative values of x ,

and is not defined for negative values of x .
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Warning

B Warning. Not every curve in the plane is the graph of a function.

For example, the circle {(x, y) | x2 + y2 = 1} is not the graph of a function. Why not?

x

y

1−1

x2 + y2 = 1

x

y1

y2

A function f has only one value f(x)
for each x in the domain.

On the circle, for each x ∈ (−1, 1)
there are two values of y, namely y1 and y2,

for which x2 + y2 = 1.
Therefore, the circle is not the graph of a function.

It is correct to say that the circle is the graph of the equation x2 + y2 = 1.
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Vertical line test

A curve on a plane is the graph of a function if and only if
no vertical line intersects the curve more than once.

y

x

not the graph of a function

y

x

the graph of a function
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Piecewise defined functions

Some functions are defined by multiple formulas on different parts of their domain.

They are called piecewise defined functions.

Example 1 (absolute value function).

|x| =
{

x, if x ≥ 0

−x, if x < 0

|0| = 0 , |2| = 2 , | − 3| = 3 . Remember: |x| ≥ 0 for any x .

The domain of y = |x| is R , the range is [0,∞) .

x

y

y = xy = −x

y = |x|
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Piecewise defined functions

Example 2. Draw the graph of the function

f(x) =







−x, x ≤ −1

0, −1 < x ≤ 2

x2 − 4, x > 2

Solution. The domain R splits into three parts:

R = (−∞,−1] ∪ (−1, 2] ∪ (2,∞) .

On each part, f is defined by its own formula:

x (−∞,−1] (−1, 2] (2,∞)

f(x) −x 0 x2 − 4
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Piecewise defined functions

x (−∞,−1] (−1, 2] (2,∞)

f(x) −x 0 x2 − 4

We construct the graph of f piece by piece.

x

y

−1 2

y = −xy = −x

y = 0

y = 0

y = x2 − 4

y = f(x)
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Even functions

Definition. A function f is called even if
its domain is symmetric about the origin (that is, for each x ∈ D , we have −x ∈ D )
and f(−x) = f(x) for all x in the domain.
The graph of an even function is symmetric about the y -axis.
Examples of even functions: y = x2 , y = x4 , y = x6.

In general, f(x) = x2n is an even function for each integer n. Indeed,

f(−x) = (−x)2n = ((−x)2)n = (x2)n = x2n = f(x).

x

y

y = x2

x−x

(x, f(x))(-x, f(-x))

x

y
y = x4

x

y

y =
1

x2

x

y

y = 1
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Even functions

More examples of even functions: y = |x| , y = cos x .

x

y
y = |x|

x

y

y = cos x
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Even functions

The sum, difference, product and quotient of even functions is an even function.

Example. Prove that f(x) = 3x8 − x2 cos(5x) is an even function.

Solution. f(x) is defined for all x . To prove that f is even,
we have to show that f(−x) = f(x) for all x ∈ R .

Take any real number x . Then

f(−x) = 3(−x)8 − (−x)2 cos(5(−x)) = 3x8 − x2 cos(−5x)

= 3x8 − x2 cos(5x) = f(x) .

Keep in mind that y = cos(5x) is an even function, that is cos(−5x) = cos(5x) .

Therefore, f(−x) = f(x) for all real x , and therefore,

f(x) = 3x8 − x2 cos(5x) is an even function.

Remark. f(x) is obtained from even functions y = 3x8, y = x2, y = cos(5x)
by operations of multiplication and subtraction. That’s why f(x) is even.
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Odd functions

Definition. A function f is called odd if
its domain is symmetric about the origin (that is, for each x ∈ D we have −x ∈ D )
and f(−x) = −f(x) for all x in the domain.
The graph of an odd function is symmetric about the origin.
Examples of odd functions: y = x , y = x3, y = x5.

In general, f(x) = x2n+1 is an odd function for each integer n. Indeed,

f(−x) = (−x)2n+1 = (−x)2n(−x) = x2n(−x) = −x2n+1 = −f(x).

x

y
y = x

x

f(x)

−x

f(−x)

x

y y = x3

x

y y = x5

x

y

y =
1

x

x

y

y =
1

x3
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Odd functions

More examples of odd functions: y = sinx , y = tanx .

y = sinx

y

x

x

y

y = tanx
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Increasing and decreasing functions

Definition. A function f is called (strictly) increasing on an interval I,
if for any x1, x2 ∈ I, such that x1 < x2 , one has f(x1) < f(x2) .

A function f is called (strictly) decreasing on an interval I,
if for any x1, x2 ∈ I, such that x1 < x2 , one has f(x1) > f(x2) .

Example.

x

y

y = f(x)

−3 −2 2 4

The function f is increasing on [−3,−2], decreasing on [−2, 2], and increasing on [2, 4] .

Control question: Is f increasing on [−3,−2] ∪ [2, 4] ? (Spoiler: No!)

17 / 20
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Increasing and decreasing functions

Example. Prove that the function f(x) = x2 − 2x decreases on (−∞, 1].

Solution. To prove that f is decreasing on (−∞, 1], we have to show that if x1 < x2 ,
then f(x1) > f(x2) for any x1, x2 ∈ (−∞, 1] .

Indeed, for any x1 < x2 in the interval (−∞, 1] ,

f(x1)− f(x2) = (x21 − 2x1)− (x22 − 2x2) = (x21 − x22)− 2(x1 − x2)

= (x1 − x2)(x1 + x2)− 2(x1 − x2) = (x1 − x2)(x1 + x2 − 2) .

Since x1 < x2 , we have x1 − x2 < 0 .

Since x1 < x2 ≤ 1 , we have x1 + x2 < 2 and, therefore, x1 + x2 − 2 < 0 .

So f(x1)− f(x2) = (x1 − x2)
︸ ︷︷ ︸

<0

(x1 + x2 − 2)
︸ ︷︷ ︸

<0

> 0 , and f(x1) > f(x2) .

Hence for any x1, x2 ∈ (−∞, 1] ,

x1 < x2 =⇒ f(x1) > f(x2) ,

therefore, f is decreasing on (−∞, 1] x

y

1

y = x2 − 2x
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Summary

In this lecture, we studied the following topics:

• the definition of a function, its domain and range

• that is the graph of a function and how to determine if a curve is the graph of a function

• what even and odd functions areand how to prove whether a function is even or odd

• what it means that a function is increasing or decreasing on an interval and how to check this.
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Comprehension checkpoint

We conclude the lecture with a few questions aimed to check how you mastered the material.

• What is the domain of the function f(x) =

√
x− 1

x− 2
?

� [1, 2) ∪ (2,∞)

• The graph of the function y = 3x4 +
1

x2
is symmetric about the y -axis.

Why is it so?

� The function y = 3x4 +
1

x2
is even as the sum of two even functions.

Therefore, its graph is symmetric about the y -axis.

• Is the curves below are graphs of functions?

x

y

x

y

� Yes � No
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