General Information about Functions

Objectives 2
What is a function? 3
Domain and range 4
Graph of a function 5
How to find the domain 6
Warning 7
Vertical line test 8
Piecewise defined functions 9
Piecewise defined functions 10
Piecewise defined functions 11
Even functions 12
Even functions 13
Even functions 14
Odd functions 15
Odd functions 16
Increasing and decreasing functions 17
Increasing and decreasing functions 18
Summary 19
Comprehension checkpoint 20

Objectives

In our first lecture, we discuss

- the definition of a function
- the domain and range of a function
- piecewise-defined functions
- even and odd functions
- increasing and decreasing functions.

What is a function?

Loosely speaking, a function expresses the dependence of a quantity on another quantity.
The precise meaning of a function is given in the following definition:
Definition. Let D and C be sets of real numbers: $D \subset \mathbb{R}, C \subset \mathbb{R}$.

$$
\begin{aligned}
& \text { A function } f \text { from } D \text { to } C \text { is a rule } \\
& \text { that assigns to each element in } D \text { exactly one element in } C .
\end{aligned}
$$

Notation. $f: D \longrightarrow C$
$x \mapsto f(x)$ or $y=f(x)$.

Domain and range

For each number x in the domain D, the function f returns the number $f(x)$ in the codomain C. This number is called the value of f at x.

The set of all values of a function f is called the range of f.
The range is a subset of the codomain.
The graph of a function f is the set of ordered pairs $\{(x, f(x)) \mid x \in D\}$.
The graph of a function is a subset of \mathbb{R}^{2}.
Example. Let $f:[1,5] \longrightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}-4 x$.
Determine the domain, codomain and range of f. Draw the graph of f.
Solution. The domain is the interval $[1,5]$, the codomain is \mathbb{R}.
The graph of $f:[1,5] \longrightarrow \mathbb{R}$ is the set of all points $\{(x, y)\}$ in the plane such that $x \in[1,5]$ and $y=x^{2}-4 x$.
That is, the graph of f is a part of the parabola $y=x^{2}-4 x$, where x takes values in $[1,5]$.

Graph of a function

To draw the graph of $y=f(x)$, we plot the parabola $y=x^{2}-4 x$:

Restrict x to $[1,5]$, and cut off the corresponding piece of the parabola.
The range is $[-4,5]$.

Remember:
the domain appears on the x-axis,
the range appears on the y-axis.

How to find the domain

Often the function is given by a single formula,

$$
\text { like } y=x^{2}-4 x \text {, or } f(x)=\frac{x+1}{(x+2)(x-3)} \text { or } f(x)=\sqrt{x} \text {. }
$$

In such cases the domain is assumed to be the maximal set of x-values for which the formula makes sense.

For example, for the function $y=x^{2}-4 x$, the domain is \mathbb{R}, since the expression $x^{2}-4 x$ is defined for all values of x.

For the function $f(x)=\frac{x+1}{(x+2)(x-3)}$, the domain is

$$
\mathbb{R} \backslash\{-2,3\}=(-\infty,-2) \cup(-2,3) \cup(3, \infty),
$$

since the formula makes sense for all x besides -2 and 3 .
The domain of the function $f(x)=\sqrt{x}$ is $[0, \infty)$,
since the \sqrt{x} makes sense for all non-negative values of x,
and is not defined for negative values of x.

Warning

Warning. Not every curve in the plane is the graph of a function.
For example, the circle $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ is not the graph of a function. Why not?

A function f has only one value $f(x)$
for each x in the domain.
On the circle, for each $x \in(-1,1)$ there are two values of y, namely y_{1} and y_{2}, for which $x^{2}+y^{2}=1$.
Therefore, the circle is not the graph of a function.
It is correct to say that the circle is the graph of the equation $x^{2}+y^{2}=1$.

Vertical line test

A curve on a plane is the graph of a function if and only if no vertical line intersects the curve more than once.

not the graph of a function

the graph of a function

Piecewise defined functions

Some functions are defined by multiple formulas on different parts of their domain.
They are called piecewise defined functions.
Example 1 (absolute value function).

$$
|x|=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{aligned}\right.
$$

$|0|=0, \quad|2|=2, \quad|-3|=3$. Remember: $|x| \geq 0$ for any x.
The domain of $y=|x|$ is \mathbb{R}, the range is $[0, \infty)$.

Piecewise defined functions

Example 2. Draw the graph of the function

$$
f(x)=\left\{\begin{array}{rlr}
-x, & x \leq-1 \\
0, & -1<x & \leq 2 \\
x^{2}-4, & x & >2
\end{array}\right.
$$

Solution. The domain \mathbb{R} splits into three parts:

$$
\mathbb{R}=(-\infty,-1] \cup(-1,2] \cup(2, \infty)
$$

On each part, f is defined by its own formula:

x	$(-\infty,-1]$	$(-1,2]$	$(2, \infty)$
$f(x)$	$-x$	0	$x^{2}-4$

Piecewise defined functions

x	$(-\infty,-1]$	$(-1,2]$	$(2, \infty)$
$f(x)$	$-x$	0	$x^{2}-4$

We construct the graph of f piece by piece.

Even functions

Definition. A function f is called even if
its domain is symmetric about the origin (that is, for each $x \in D$, we have $-x \in D$)
and $f(-x)=f(x)$ for all x in the domain.
The graph of an even function is symmetric about the y-axis.
Examples of even functions: $y=x^{2}, y=x^{4}, y=x^{6}$.
In general, $f(x)=x^{2 n}$ is an even function for each integer n. Indeed,
$f(-x)=(-x)^{2 n}=\left((-x)^{2}\right)^{n}=\left(x^{2}\right)^{n}=x^{2 n}=f(x)$.

Even functions

More examples of even functions: $y=|x|, y=\cos x$.

Even functions

The sum, difference, product and quotient of even functions is an even function.
Example. Prove that $f(x)=3 x^{8}-x^{2} \cos (5 x)$ is an even function.
Solution. $f(x)$ is defined for all x. To prove that f is even, we have to show that $f(-x)=f(x)$ for all $x \in \mathbb{R}$.
Take any real number x. Then

$$
\begin{aligned}
f(-x)=3(-x)^{8}-(-x)^{2} \cos (5(-x)) & =3 x^{8}-x^{2} \cos (-5 x) \\
& =3 x^{8}-x^{2} \cos (5 x)=f(x) .
\end{aligned}
$$

Keep in mind that $y=\cos (5 x)$ is an even function, that is $\cos (-5 x)=\cos (5 x)$.
Therefore, $f(-x)=f(x)$ for all real x, and therefore,

$$
f(x)=3 x^{8}-x^{2} \cos (5 x) \text { is an even function. }
$$

Remark. $f(x)$ is obtained from even functions $y=3 x^{8}, y=x^{2}, y=\cos (5 x)$ by operations of multiplication and subtraction. That's why $f(x)$ is even.

Odd functions

Definition. A function f is called odd if its domain is symmetric about the origin (that is, for each $x \in D$ we have $-x \in D$) and $f(-x)=-f(x)$ for all x in the domain.
The graph of an odd function is symmetric about the origin.
Examples of odd functions: $y=x, y=x^{3}, y=x^{5}$.
In general, $f(x)=x^{2 n+1}$ is an odd function for each integer n. Indeed, $f(-x)=(-x)^{2 n+1}=(-x)^{2 n}(-x)=x^{2 n}(-x)=-x^{2 n+1}=-f(x)$.

Odd functions

More examples of odd functions: $y=\sin x, y=\tan x$.

Increasing and decreasing functions

Definition. A function f is called (strictly) increasing on an interval I, if for any $x_{1}, x_{2} \in I$, such that $x_{1}<x_{2}$, one has $f\left(x_{1}\right)<f\left(x_{2}\right)$.

A function f is called (strictly) decreasing on an interval I, if for any $x_{1}, x_{2} \in I$, such that $x_{1}<x_{2}$, one has $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Example.

The function f is increasing on $[-3,-2]$, decreasing on $[-2,2]$, and increasing on $[2,4]$.
Control question: Is f increasing on $[-3,-2] \cup[2,4]$? (Spoiler: No!)

Increasing and decreasing functions

Example. Prove that the function $f(x)=x^{2}-2 x$ decreases on $(-\infty, 1]$.
Solution. To prove that f is decreasing on $(-\infty, 1]$, we have to show that if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$ for any $x_{1}, x_{2} \in(-\infty, 1]$.
Indeed, for any $x_{1}<x_{2}$ in the interval $(-\infty, 1]$,

$$
\begin{aligned}
f\left(x_{1}\right)-f\left(x_{2}\right) & =\left(x_{1}^{2}-2 x_{1}\right)-\left(x_{2}^{2}-2 x_{2}\right)=\left(x_{1}^{2}-x_{2}^{2}\right)-2\left(x_{1}-x_{2}\right) \\
& =\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)-2\left(x_{1}-x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}-2\right)
\end{aligned}
$$

Since $x_{1}<x_{2}$, we have $x_{1}-x_{2}<0$.
Since $x_{1}<x_{2} \leq 1$, we have $x_{1}+x_{2}<2$ and, therefore, $x_{1}+x_{2}-2<0$.
So $f\left(x_{1}\right)-f\left(x_{2}\right)=\underbrace{\left(x_{1}-x_{2}\right)}_{<0} \underbrace{\left(x_{1}+x_{2}-2\right)}_{<0}>0$, and $f\left(x_{1}\right)>f\left(x_{2}\right)$.
Hence for any $x_{1}, x_{2} \in(-\infty, 1]$,
$x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$,
therefore, f is decreasing on $(-\infty, 1]$

Summary

In this lecture, we studied the following topics:

- the definition of a function, its domain and range
- that is the graph of a function and how to determine if a curve is the graph of a function
- what even and odd functions areand how to prove whether a function is even or odd
- what it means that a function is increasing or decreasing on an interval and how to check this.

Comprehension checkpoint

We conclude the lecture with a few questions aimed to check how you mastered the material.

- What is the domain of the function $f(x)=\frac{\sqrt{x-1}}{x-2}$?
- $[1,2) \cup(2, \infty)$
- The graph of the function $y=3 x^{4}+\frac{1}{x^{2}}$ is symmetric about the y-axis.

Why is it so?

- The function $y=3 x^{4}+\frac{1}{x^{2}}$ is even as the sum of two even functions.

Therefore, its graph is symmetric about the y-axis.

- Is the curves below are graphs of functions?

- Yes

- No

