Lecture 1

General Information about Functions

Objectives
What is a function?
Domain and range
Graph of a function
How to find the domain
Warning
Vertical line test
Piecewise defined functions
Piecewise defined functions
Piecewise defined functions
Even functions
Even functions
Even functions
Odd functions
Odd functions
Increasing and decreasing functions
Increasing and decreasing functions
Summary
Comprehension checkpoint

Objectives

In our first lecture, we discuss

- the definition of a **function**
- the domain and range of a function
- piecewise-defined functions
- even and odd functions
- increasing and decreasing functions.

2 / 20

What is a function?Loosely speaking, a function expresses the dependence of a quantity on another quantity.The precise meaning of a function is given in the following definition:Definition. Let D and C be sets of real numbers: $D \subset \mathbb{R}$, $C \subset \mathbb{R}$.
A function f from D to C is a rule
that assigns to each element in D exactly one element in C.Notation. $f: D \rightarrow C$
 $x \mapsto f(x)$ or y = f(x).f: $D \longrightarrow C$
domain
of fy = f(x) $f: D \longrightarrow C$
variabley = f(x)

Domain and range

For each number x in the domain D, the function f returns the number f(x) in the codomain C. This number is called the *value* of f at x. The set of all values of a function f is called the *range* of f. The range is a subset of the codomain. The *graph* of a function f is the set of ordered pairs $\{(x, f(x)) \mid x \in D\}$. The graph of a function is a subset of \mathbb{R}^2 . **Example.** Let $f : [1,5] \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^2 - 4x$. Determine the domain, codomain and range of f. Draw the graph of f. **Solution.** The domain is the interval [1,5], the codomain is \mathbb{R} . The graph of $f : [1,5] \longrightarrow \mathbb{R}$ is the set of all points $\{(x,y)\}$ in the plane such that $x \in [1,5]$ and $y = x^2 - 4x$. That is, the graph of f is a part of the parabola $y = x^2 - 4x$, where x takes values in [1,5].

How to find the domain

Often the function is given by a single formula,

like
$$y = x^2 - 4x$$
, or $f(x) = \frac{x+1}{(x+2)(x-3)}$ or $f(x) = \sqrt{x}$.

In such cases the domain is assumed to be the **maximal** set of x-values

for which the formula makes sense. For example, for the function $y = x^2 - 4x$, the domain is $\mathbb R$, since the expression $x^2 - 4x$ is defined for **all** values of x. For the function $f(x) = \frac{x+1}{(x+2)(x-3)}$, the domain is $\mathbb{R} \setminus \{-2,3\} = (-\infty,-2) \cup (-2,3) \cup (3,\infty)$, since the formula makes sense for all x besides -2 and 3. The domain of the function $f(x) = \sqrt{x}$ is $[0, \infty)$, since the \sqrt{x} makes sense for all non-negative values of x, and is not defined for negative values of x . 6 / 20

Warning

Marning. Not every curve in the plane is the graph of a function. For example, the circle $\{(x, y) | x^2 + y^2 = 1\}$ is **not** the graph of a function. Why not? A function f has **only one** value f(x)for each x in the domain. On the circle, for each $x \in (-1, 1)$

there are **two** values of y, namely y_1 and y_2 , for which $x^2 + y^2 = 1$. Therefore, the circle is not the graph of a function.

It is correct to say that the circle is the graph of the **equation** $x^2 + y^2 = 1$.

Piecewise defined functions

12 / 20

Even functions

The sum, difference, product and quotient of even functions is an even function. **Example.** Prove that $f(x) = 3x^8 - x^2 \cos(5x)$ is an even function. **Solution.** f(x) is defined for all x. To prove that f is even, we have to show that f(-x) = f(x) for all $x \in \mathbb{R}$. Take any real number x. Then $f(-x) = 3(-x)^8 - (-x)^2 \cos(5(-x)) = 3x^8 - x^2 \cos(-5x)$ $= 3x^8 - x^2 \cos(5x) = f(x)$. Keep in mind that $y = \cos(5x)$ is an even function, that is $\cos(-5x) = \cos(5x)$. Therefore, f(-x) = f(x) for all real x, and therefore, $f(x) = 3x^8 - x^2 \cos(5x)$ is an even function. **Remark.** f(x) is obtained from **even** functions $y = 3x^8$, $y = x^2$, $y = \cos(5x)$ by operations of multiplication and subtraction. That's why f(x) is even. 14 / 20

Odd functions

Definition. A function f is called *odd* if its domain is symmetric about the origin (that is, for each $x \in D$ we have $-x \in D$) and f(-x) = -f(x) for all x in the domain. The graph of an odd function is **symmetric** about the origin. **Examples** of odd functions: y = x, $y = x^3$, $y = x^5$. In general, $f(x) = x^{2n+1}$ is an odd function for each integer n. Indeed, $f(-x) = (-x)^{2n+1} = (-x)^{2n}(-x) = x^{2n}(-x) = -x^{2n+1} = -f(x)$. $\overbrace{f(x) \to f(-x) \to x^{2n}}^{y} = x$, $y = x^3$, $y = x^5$, $y = x^5$. $\overbrace{f(x) \to f(-x) \to x^{2n}}^{y} = \frac{1}{x}$, $y \to y \to x^5$, $y = \frac{1}{x}$, $y \to \frac{1}{x}$, $y = \frac{1}{$

Increasing and decreasing functions

Example. Prove that the function $f(x) = x^2 - 2x$ decreases on $(-\infty, 1]$. Solution. To prove that f is decreasing on $(-\infty, 1]$, we have to show that if $x_1 < x_2$, then $f(x_1) > f(x_2)$ for any $x_1, x_2 \in (-\infty, 1]$. Indeed, for any $x_1 < x_2$ in the interval $(-\infty, 1]$, $f(x_1) - f(x_2) = (x_1^2 - 2x_1) - (x_2^2 - 2x_2) = (x_1^2 - x_2^2) - 2(x_1 - x_2)$ $= (x_1 - x_2)(x_1 + x_2) - 2(x_1 - x_2) = (x_1 - x_2)(x_1 + x_2 - 2)$. Since $x_1 < x_2$, we have $x_1 - x_2 < 0$. Since $x_1 < x_2 \le 1$, we have $x_1 + x_2 < 2$ and, therefore, $x_1 + x_2 - 2 < 0$. So $f(x_1) - f(x_2) = \underbrace{(x_1 - x_2)(x_1 + x_2 - 2)}_{<0} > 0$, and $f(x_1) > f(x_2)$. Hence for any $x_1, x_2 \in (-\infty, 1]$, $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$, therefore, f is decreasing on $(-\infty, 1]$

18 / 20

Summary

In this lecture, we studied the following topics:

- the definition of a function, its domain and range
- that is the graph of a function and how to determine if a curve is the graph of a function
- what even and odd functions areand how to prove whether a function is even or odd
- what it means that a function is increasing or decreasing on an interval and how to check this.

Comprehension checkpoint

We conclude the lecture with a few questions aimed to check how you mastered the material.

- What is the domain of the function $f(x) = \frac{\sqrt{x-1}}{x-2}$?
- $\blacktriangleright \quad [1,2) \cup (2,\infty)$

• The graph of the function $y = 3x^4 + \frac{1}{x^2}$ is symmetric about the y-axis. Why is it so?

• The function $y = 3x^4 + \frac{1}{x^2}$ is **even** as the sum of two even functions. Therefore, its graph is symmetric about the *y*-axis.

• Is the curves below are graphs of functions?

