Homework

1. Let a, b, c, d be real numbers. Compute the product $(a+b i)(c+d i)$ and rewrite it in the form $x+y i$.
2. Rewrite the number $\sqrt{3}+i$ in the polar form $r e^{i \theta}$.
3. Rewrite the number $(-5+5 i)^{3}$ in polar form.
4. Write the number $8 e^{5 \pi / 6}$ in the form $a+b i$.
5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$.
6. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
7. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.

Solutions

1. Let a, b, c, d be real numbers. Compute the product $(a+b i)(c+d i)$ and rewrite it in the form $x+y i$ where x, y are real numbers expressed in terms of a, b, c, d.
Solution:

$$
\begin{aligned}
(a+b i)(c+d i) & =\left(a c+a d i+b c i+b d i^{2}\right) \\
& =(a c+a d i+b c i-b d) \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

2. Rewrite the number $\sqrt{3}+i$ in the polar form $r e^{i \theta}$.

Solution: $\theta=\arctan (1 / \sqrt{3})=\pi / 6$ or $\pi / 6+\pi$ since the range of arctan only includes angles in quadrants 1 and 4 . Seeing that $\sqrt{3}+i$ lies in quadrant 1 , $\theta=\pi / 6$. We now need to find $r . r=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=\sqrt{4}=2$.
Hence, the polar form of our number is $2 e^{i \pi / 6}$.
3. Rewrite the number $(-5+5 i)^{3}$ in polar form.

Solution: Since it is easier to compute powers of numbers when they are in polar form, we start by converting $-5+5 i$ into polar form. We first pull out the common factor of 5 to get $5(-1+i)$. Since this point lies in quadrant 2 and the real and imaginary parts have equal length, we have that $\theta=3 \pi / 2$. The length of $-1+i$ is $\sqrt{1^{2}+1^{2}}=\sqrt{2}$. Hence, $-5+5 i=5(-1+i)=5\left(\sqrt{2} e^{i 3 \pi / 2}\right)=5 \sqrt{2} e^{i 3 \pi / 2}$. Hence,

$$
\begin{aligned}
(-5+5 i)^{3} & =\left(5 \sqrt{2} e^{i 3 \pi / 2}\right)^{3}=(5 \sqrt{2})^{3} e^{i 3 \cdot 3 \pi / 2} \\
& =125 \cdot 2 \sqrt{2} e^{i 9 \pi / 2}=250 \sqrt{2} e^{i \pi / 2}
\end{aligned}
$$

4. Write the number $8 e^{5 \pi / 6}$ in the form $a+b i$.

Solution:

$$
\begin{aligned}
8 e^{5 \pi / 6} & =8 \cos (5 \pi / 6)+8 i \sin (5 \pi / 6)=8(-\sqrt{3} / 2)+8 i(1 / 2) \\
& =-4 \sqrt{3}+4 i
\end{aligned}
$$

5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$.

Solution: Since this is a second order linear differential equation with constant coefficients, we may solve it by using the characteristic equation: $r^{2}-6 r+5=0$. The general solution to this equation has the form $y=$ $C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}$ where C_{1}, C_{2} are arbitrary constants and r_{1}, r_{2} are roots of the characteristic equation, satisfying $r_{1} \neq r_{2}$. Factoring the characteristic equation, we get $(r-5)(r-1)=0$. Hence, the roots are $r_{1}=5, r_{2}=1$. Hence, the general solution is the function $y=C_{1} e^{5 x}+C_{2} e^{x}$.
6. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
Solution: The characteristic equation is $r^{2}-6 r+9=0$. Factoring, we get $(r-3)(r-3)=0$. Since both roots are at $r=3$, the general solution is $y=C_{1} e^{3 x}+C_{2} x e^{3 x}$. Plugging in the initial condition $y(0)=-2$, we have $-2=C_{1} e^{0}+C_{2}(0) e^{0}=C_{1}$. Hence, $C_{1}=-2$. To utilize the other initial condition, $y^{\prime}(0)=0$, we must first compute y^{\prime}. $y^{\prime}=3 C_{1} e^{3 x}+\left(C_{2} e^{3 x}+\right.$ $\left.3 C_{2} x e^{3 x}\right)$. Plugging in the point $(0,1)$ and $C_{1}=-2$, we have

$$
1=3(-2) e^{0}+C_{2} e^{0}+3 C_{2}(0) e^{0} \quad=-6+C_{2}
$$

Hence, $C_{2}=7$. So the particular solution is $y=-2 e^{3 x}+7 x e^{3 x}$.
7. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.
Solution: The characteristic equation is $r^{2}-r+1=0$. Using the quadratic formula to find the roots, we have $r=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2} \pm \frac{\sqrt{3} i}{2}$. Since these are complex roots and we only care about a real solution, the general solution is of the form $y=e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))$.
Utilizing the initial conditions, we solve for the particular solution. Since $y(0)=2$, we have $2=e^{0}(A \cos (0)+B \sin (0))=A$. So $A=2$. To find B, we must first compute y^{\prime}. Using product rule, we have
$y^{\prime}=\frac{1}{2} e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))+e^{x / 2}(-\sqrt{3} A \sin (\sqrt{3} x)+\sqrt{3} B \cos (\sqrt{3} x))$
Plugging in the initial condition $y^{\prime}(0)=0$ gives us
$0=\frac{1}{2} e^{0}(A \cos (0)+B \sin (0))+e^{0}(-\sqrt{3} A \sin (0)+\sqrt{3} B \cos (0))=\frac{1}{2}(A)+1(\sqrt{3} B)$.
Hence, $B=\left(-\frac{1}{2} A\right) / \sqrt{3}=-1 / \sqrt{3}$. Plugging A, B into the general solution gives us the particular solution $y=e^{x / 2}\left(2 \cos (\sqrt{3} x)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} x)\right)$.

Answer Key

1. Let a, b, c, d be real numbers. Compute the product $(a+b i)(c+d i)$ and rewrite it in the form $x+y i$.
$(a c-b d)+(a d+b c) i$
2. Rewrite the number $\sqrt{3}+i$ in the polar form $r e^{i \theta}$.
$2 e^{i \pi / 6}$
3. Rewrite the number $(-5+5 i)^{3}$ in polar form.
$250 \sqrt{2} e^{i \pi / 2}$
4. Write the number $8 e^{5 \pi / 6}$ in the form $a+b i$.
$-4 \sqrt{3}+4 i$
5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$.
$y=C_{1} e^{5 x}+C_{2} e^{x}$
6. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
General solution: $y=C_{1} e^{3 x}+C_{2} x e^{3 x}$.
Particular solution: $y=-2 e^{3 x}+7 x e^{3 x}$.
7. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.
General solution: $y=e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))$.
Particular solution: $y=e^{x / 2}\left(2 \cos (\sqrt{3} x)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} x)\right)$.
