## Homework

1. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 5 th polynomial approximation to the solution to the differential equation $y^{\prime \prime}+(1+x) y^{\prime}+2 x^{2} y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=0$.
2. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 3 polynomial approximation (centered at 0) to the solution to the differential equation $\left(x^{2}-2\right) y^{\prime \prime}-3 x y^{\prime}+6 y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=1$.
3. Verify that the power series $\Sigma_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ is a solution to the differential equation $y^{\prime \prime}+y=0$.
4. Compute the degree 3 polynomial approximation of the series solution to the differential equation $x y^{\prime \prime}+4 y=0$ centered at $x=2$ with initial conditions $y(2)=4, y^{\prime}(2)=2$. (i.e. $y=\Sigma_{0}^{\infty} b_{n}(x-2)^{n}$ )

## Solutions

1. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 5 th polynomial approximation to the solution to the differential equation $y^{\prime \prime}+(1+x) y^{\prime}+2 x^{2} y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=0$.
Solution: Let $y(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the power series solution to the IVP which is convergent near $x=0$. Since $y(0)=1, b_{0}=1$. From $y$, we can take the derivative to get $y^{\prime} . y^{\prime}=\sum_{n=1}^{\infty} n b_{n} x^{n-1}$. Since $y^{\prime}(0)=0$ and all the non-constant terms vanish at $0, b_{1}=0$. To keep solving, we also need to know the formulas for $y^{\prime \prime}, x y^{\prime}$, and $2 x^{2} y . y^{\prime \prime}=\Sigma_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}$. $x^{2} y=\Sigma_{n=0}^{\infty} b_{n} x^{n+2} . x y^{\prime}=\Sigma_{n=1}^{\infty} n b_{n} x^{n}$.
Since $y^{\prime \prime}+y^{\prime}+x y^{\prime}+2 x^{2} y=0$, the series obtained by summing the 4 power series must have 0 for each coefficient. The constant term of this sum is $2 b_{2}+b_{1}+0+0$ which come from $y^{\prime}$ and $y^{\prime \prime}$. Hence, $b_{1}+2 b_{2}=0$. Since $b_{1}=0$, this means that $b_{2}=0$. Summing the coefficients of the linear terms of the 4 series gives us $6 b_{3}+2 b_{2}+b_{1}+0=0$. Since $b_{1}=b_{2}=0$, $b_{3}=0$. Summing the quadratic terms gives us $12 b_{4}+3 b_{3}+2 b_{2}+2 b_{0}=0$. Since $b_{2}=b_{3}=0$, we have $b_{4}=-2 b_{0} / 12=-1 / 6$. Summing the cubic terms gives us $20 b_{5}+4 b_{4}+3 b_{3}+2 b_{1}=0$. Since $b_{1}=b_{3}=0, b_{5}=$ $-4 b_{4} / 20=-(-1 / 6) / 5=1 / 30$. Now that we've found through $b_{5}$, we have the degree 5 polynomial approximation to the solution, which amounts to $y(x) \simeq 1-(1 / 6) x^{4}+(1 / 30) x^{5}$.
2. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 3 polynomial approximation (centered at 0 ) to the solution to the differential equation $\left(x^{2}-2\right) y^{\prime \prime}-3 x y^{\prime}+6 y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=1$.
Solution: Let $y(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the power series solution to the IVP which is convergent near $x=0$. Since $y(0)=1, b_{0}=1$. From $y$, we can take the derivative to get $y^{\prime} . y^{\prime}=\Sigma_{n=1}^{\infty} n b_{n} x^{n-1}$. Since $y^{\prime}(0)=0$ and all the non-constant terms vanish at $0, b_{1}=1$. To keep solving, we also need to know the formulas for $x^{2} y^{\prime \prime},-2 y^{\prime \prime},-3 x y^{\prime}$, and $6 y$.

$$
\begin{aligned}
x^{2} y^{\prime \prime} & =\Sigma_{n=2}^{\infty} n(n-1) b_{n} x^{n} \\
-2 y^{\prime \prime} & =\Sigma_{n=2}^{\infty}-2 n(n-1) b_{n} x^{n-2} \\
-3 x y^{\prime} & =\Sigma_{n=1}^{\infty}-3 n b_{n} x^{n} \\
6 y & =\Sigma_{n=0}^{\infty} 6 b_{n} x^{n}
\end{aligned}
$$

Each coefficient to the resulting power series comprised by summing the above four power series must equal 0 . Summing the constant terms gives us $0+\left(-2(2)(1) b_{2}\right)+0+6 b_{0}=-4 b_{2}+6=0$. Hence, $b_{2}=6 / 4=3 / 2$. Summing the linear terms gives us $0+\left(-2(3)(2) b_{3}\right)+\left(-3(1) b_{1}\right)+6 b_{1}=$ $-12 b_{3}+3 b_{1}=-12 b_{3}+3=0$. Hence, $b_{3}=1 / 4$.

Therefore, the degree 3 polynomial approximation to the power series is $y \simeq b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}=1+x+(3 / 2) x^{2}+(1 / 4) x^{3}$.
3. Verify that the power series $\Sigma_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ is a solution to the differential equation $y^{\prime \prime}+y=0$.
Set $y(x)=\Sigma_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. Since this is a convergent series, we may compute it's derivative term-by-term and it will also be a convergent power series. Hence, $y^{\prime}=\Sigma_{1}^{\infty} \frac{(-1)^{n} 2 n x^{2 n-1}}{(2 n)!}=\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n-1}}{(2 n-1)!}$. To get $y^{\prime \prime}$ we take the derivative again, getting

$$
\begin{aligned}
y^{\prime \prime} & =\Sigma_{1}^{\infty} \frac{(-1)^{n}(2 n-1) x^{2 n-2}}{(2 n-1)!} \\
& =\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n-2)!} \\
& =\Sigma_{0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n)!} \\
& =-\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =-y
\end{aligned}
$$

Hence, $y^{\prime \prime}+y=(-y)+y=0$.
4. Compute the degree 3 polynomial approximation of the series solution to the differential equation $x y^{\prime \prime}+4 y=0$ centered at $x=2$ with initial conditions $y(2)=4, y^{\prime}(2)=2$. (i.e. $y=\Sigma_{0}^{\infty} b_{n}(x-2)^{n}$ )
Before, we would just need $x y^{\prime \prime}$ and $4 y$ and we would sum those series together. Since this series is centered at $x=2$, We will want to find $(x-2) y^{\prime \prime}, 2 y^{\prime \prime}$, and $4 y$ and will sum these together, knowing that their sum must equal the 0 function.
Before we sum the individual series, we know from the initial conditions that $b_{0}=4, b_{1}=2$. We now only need to compute $b_{2}$ and $b_{3}$.

$$
\begin{aligned}
y & =\Sigma_{0}^{\infty} b_{n}(x-2)^{n} \\
y^{\prime} & =\Sigma_{1}^{\infty} n b_{n}(x-2)^{n-1} \\
y^{\prime \prime} & =\Sigma_{2}^{\infty} n(n-1) b_{n}(x-2)^{n-2} \\
4 y & =\Sigma_{0}^{\infty} 4 b_{n}(x-2)^{n} \\
(x-2) y^{\prime \prime} & =\Sigma_{2}^{\infty} n(n-1) b_{n}(x-2)^{n-1} \\
2 y^{\prime \prime} & =\Sigma_{2}^{\infty} 2 n(n-1) b_{n}(x-2)^{n-2}
\end{aligned}
$$

Summing the constant terms gives us $4 b_{0}+0+2(2)(1) b_{2}=0$. Hence, $b_{2}=-4 b_{0} / 4=-4$. Summing the linear terms gives us $4 b_{1}+(2)(1) b_{2}+$
$2(3)(2) b_{3}=0$. Hence, $b_{3}=(-4(4)-2(-4)) / 12=-2 / 3$. Thus, together the first four terms of the series form $y \simeq 4+2(x-2)-4(x-2)^{2}-$ $(2 / 3)(x-2)^{3}$.

## Answer Key

1. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 5 th polynomial approximation to the solution to the differential equation $y^{\prime \prime}+(1+x) y^{\prime}+2 x^{2} y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=0$. $y(x) \simeq 1-(1 / 6) x^{4}+(1 / 30) x^{5}$.
2. Suppose there is a convergent power series representation for a solution $y$ to the following differential equation in a neighborhood of 0 . Using power series, compute the degree 3 polynomial approximation (centered at 0) to the solution to the differential equation $\left(x^{2}-2\right) y^{\prime \prime}-3 x y^{\prime}+6 y=0$ with initial conditions $y(0)=1$, and $y^{\prime}(0)=1$.
$y(x) \simeq=1+x+(3 / 2) x^{2}+(1 / 4) x^{3}$.
3. Verify that the power series $\Sigma_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ is a solution to the differential equation $y^{\prime \prime}+y=0$.
Set $y(x)=\Sigma_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. Since this is a convergent series, we may compute it's derivative term-by-term and it will also be a convergent power series. Hence, $y^{\prime}=\Sigma_{1}^{\infty} \frac{(-1)^{n} 2 n x^{2 n-1}}{(2 n)!}=\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n-1}}{(2 n-1)!}$. To get $y^{\prime \prime}$ we take the derivative again, getting

$$
\begin{aligned}
y^{\prime \prime} & =\Sigma_{1}^{\infty} \frac{(-1)^{n}(2 n-1) x^{2 n-2}}{(2 n-1)!} \\
& =\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n-2)!} \\
& =\Sigma_{0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n)!} \\
& =-\Sigma_{1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =-y
\end{aligned}
$$

Hence, $y^{\prime \prime}+y=(-y)+y=0$.
4. Compute the degree 3 polynomial approximation of the series solution to the differential equation $x y^{\prime \prime}+4 y=0$ centered at $x=2$ with initial conditions $y(2)=4, y^{\prime}(2)=2$. (i.e. $y=\Sigma_{0}^{\infty} b_{n}(x-2)^{n}$ )
$y \simeq 4+2\left(x_{2}\right)-4(x-2)^{2}-(2 / 3)(x-2)^{3}$.

