Homework

All the problems are to be solved using the method of separation of variables.

- 1. Compute the general solution to the differential equation $y' = x^2y 2y$.
- 2. Compute the particular solution to the differential equation y' = y + 2with initial condition y(0) = 0.
- 3. Compute the general solution and particular solution to the differential equation $y' = x^3 e^y$ with initial condition y(0) = 1.
- 4. Compute the particular solution to the differential equation $y' = e^{2x}y^4$ with initial condition y(0) = 1.
- 5. Compute the general solution to the differential equation $y' = 2y(\sec^2 x 1)$.
- 6. Compute the general solution to the differential equation $yxy' = (x^2 1)$.

Solutions

- 1. Compute the general solution to the differential equation $y' = x^2y 2y$. Solution: We can factor the right side of the equation to get $y' = y(x^2-2)$. Expressing y' as dy/dx, when we separate variables we get $\int \frac{dy}{y} = \int x^2 - 2dx$. Integrating this, we obtain $\ln |y| = x^3/3 - 2x + C_1$. Exponentiating, we get $|y| = e^{x^3/3 - 2x + C_1}$. We can bring the constant C_1 as the constant $C = e^{C_1}$ and this lets us remove the absolute value bars around y. So we have $y = Ce^{x^3/3 - 2x}$.
- 2. Compute the particular solution to the differential equation y' = y + 2with initial condition y(0) = 0.

Solution: Rewriting this equation with dy/dx notation, we have dy/dx = y + 2. Separating variables, we get $\frac{dy}{y+2} = dx$. Integrating both sides, we get $\ln |y+2| = x + C_1$. Exponentiating, we get $|y+2| = e^{x+C_1}$ which can be rewritten as $y+2 = Ce^x$. Plugging in the initial condition, we get $0+2 = Ce^0 = C$. Hence, C = 2. Thus, our particular solution is $y = -2 + 2e^x$.

3. Compute the general solution and particular solution to the differential equation $y' = x^3 e^y$ with initial condition y(0) = 1.

Solution: Rewriting this equation with dy/dx notation, we have $dy/dx = x^3 e^y$. Separating variables, we get $\frac{dy}{e^y} = x^3 dx$. To continue, we want to take the integral of both sides, as follows:

$$\int e^{-y} dy = \int x^3 dx$$

- $e^{-y} = x^4/4 + C_1$
 $e^{-y} = -x^4/4 + C_2$
- $y = \ln(-x^4/4 + C_2)$
 $y = \ln(-x^4/4 + C_2)$

Plugging in the initial condition y(0) = 1, we have $1 = \ln(C_2)$. Hence, $C_2 = 0$. Thus, the general solution is $y = \ln(-x^4/4+C)$ and the particular solution is $y = \ln(-x^4/4)$.

4. Compute the particular solution to the differential equation $y' = e^{2x}y^4$ with initial condition y(0) = 1.

Solution: Rewriting this equation with dy/dx notation, we have dy/dx =

 $e^{2x}y^4$. The computation then follows as:

$$\frac{dy}{y^4} = e^{2x} dx$$

$$\int y^{-4} dy = \int e^{2x} dx$$

$$y^{-3}/(-3) = e^{2x}/2 + C_1$$

$$y^{-3} = (-3/2)e^{2x} + C_2$$

$$y = ((-3/2)e^{2x} + C_2)^{-1/3}$$

Plugging in the initial condition y(0) = 1, we get $1 = ((-3/2)e^0 + C_2)^{(-1/3)}$. Thus $1 = 1^{-3} = ((-3/2) + C_2)$. Hence, C = 5/2. So the particular solution is $y = ((-3/2)e^{2x} + 5/2)^{-1/3}$.

5. Compute the general solution to the differential equation $y' = 2y(\sec^2 x - 1)$.

Solution: Rewriting this equation with dy/dx notation, we have $dy/dx = 2y(\sec^2 x - 1)$. Separating variables, we get $\frac{dy}{y} = 2(\sec^2 x - 1)dx$. The computation then follows as:

$$\int \frac{dy}{y} = 2 \int \sec^2 x - 1dx$$
$$\ln |y| = 2(\tan x - x + C_1)$$
$$|y| = e^{2(\tan x - x + C_1)}$$
$$y = Ce^{2\tan x - 2x}$$

And we are done.

6. Compute the general solution to the differential equation $yxy' = (x^2 - 1)$. Solution: Rewriting this equation with dy/dx notation, we have $yx\frac{dy}{dx} = (x^2 - 1)$. Separating variables, we get $ydy = \frac{x^2 - 1}{x}dx$. The computation then follows as:

$$\int y dy = \int x - (1/x) dx$$
$$y^2/2 = x^2/2 - \ln|x| + C_1$$
$$y^2 = x^2 - 2\ln|x| + C$$

And we are done.

Answer Key

- 1. Compute the general solution to the differential equation $y' = x^2y 2y$. $y = Ce^{x^3/3 - 2x}$.
- 2. Compute the particular solution to the differential equation y' = y + 2with initial condition y(0) = 0.

 $y = -2 + 2e^x$

3. Compute the general solution and particular solution to the differential equation $y' = x^3 e^y$ with initial condition y(0) = 1.

General solution: $y = \ln(-x^4/4 + C)$ Particular solution: $y = \ln(-x^4/4)$

4. Compute the particular solution to the differential equation $y' = e^{2x}y^4$ with initial condition y(0) = 1.

 $y = ((-3/2)e^{2x} + 5/2)^{-1/3}$

- 5. Compute the general solution to the differential equation $y' = 2y(\sec^2 x 1)$. $y = Ce^{2\tan x - 2x}$
- 6. Compute the general solution to the differential equation $yxy' = (x^2 1)$. $y^2 = x^2 - 2\ln|x| + C$