Homework

All the problems are to be solved using the method of separation of variables.

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$.
2. Compute the particular solution to the differential equation $y^{\prime}=y+2$ with initial condition $y(0)=0$.
3. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
4. Compute the particular solution to the differential equation $y^{\prime}=e^{2 x} y^{4}$ with initial condition $y(0)=1$.
5. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ 1).
6. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$.

Solutions

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$.

Solution: We can factor the right side of the equation to get $y^{\prime}=y\left(x^{2}-2\right)$. Expressing y^{\prime} as $d y / d x$, when we separate variables we get $\int \frac{d y}{y}=\int x^{2}-$ $2 d x$. Integrating this, we obtain $\ln |y|=x^{3} / 3-2 x+C_{1}$. Exponentiating, we get $|y|=e^{x^{3} / 3-2 x+C_{1}}$. We can bring the constant C_{1} as the constant $C=e^{C_{1}}$ and this lets us remove the absolute value bars around y. So we have $y=C e^{x^{3} / 3-2 x}$.
2. Compute the particular solution to the differential equation $y^{\prime}=y+2$ with initial condition $y(0)=0$.
Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$ $y+2$. Separating variables, we get $\frac{d y}{y+2}=d x$. Integrating both sides, we get $\ln |y+2|=x+C_{1}$. Exponentiating, we get $|y+2|=e^{x+C_{1}}$ which can be rewritten as $y+2=C e^{x}$. Plugging in the initial condition, we get $0+2=C e^{0}=C$. Hence, $C=2$. Thus, our particular solution is $y=-2+2 e^{x}$.
3. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$ $x^{3} e^{y}$. Separating variables, we get $\frac{d y}{e^{y}}=x^{3} d x$. To continue, we want to take the integral of both sides, as follows:

$$
\begin{aligned}
& \int e^{-y} d y=\int x^{3} d x \\
& -e^{-y}=x^{4} / 4+C_{1} \\
& e^{-y}=-x^{4} / 4+C_{2} \\
& -y=\ln \left(-x^{4} / 4+C_{2}\right) \\
& y=\ln \left(-x^{4} / 4+C_{2}\right)
\end{aligned}
$$

Plugging in the initial condition $y(0)=1$, we have $1=\ln \left(C_{2}\right)$. Hence, $C_{2}=0$. Thus, the general solution is $y=\ln \left(-x^{4} / 4+C\right)$ and the particular solution is $y=\ln \left(-x^{4} / 4\right)$.
4. Compute the particular solution to the differential equation $y^{\prime}=e^{2 x} y^{4}$ with initial condition $y(0)=1$.

Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$
$e^{2 x} y^{4}$. The computation then follows as:

$$
\begin{aligned}
\frac{d y}{y^{4}} & =e^{2 x} d x \\
\int y^{-4} d y & =\int e^{2 x} d x \\
y^{-3} /(-3) & =e^{2 x} / 2+C_{1} \\
y^{-3} & =(-3 / 2) e^{2 x}+C_{2} \\
y & =\left((-3 / 2) e^{2 x}+C_{2}\right)^{-1 / 3}
\end{aligned}
$$

Plugging in the initial condition $y(0)=1$, we get $1=\left((-3 / 2) e^{0}+C_{2}\right)^{(}-$ $1 / 3)$. Thus $1=1^{-3}=\left((-3 / 2)+C_{2}\right)$. Hence, $C=5 / 2$. So the particular solution is $y=\left((-3 / 2) e^{2 x}+5 / 2\right)^{-1 / 3}$.
5. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ $1)$.
Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$ $2 y\left(\sec ^{2} x-1\right)$. Separating variables, we get $\frac{d y}{y}=2\left(\sec ^{2} x-1\right) d x$. The computation then follows as:

$$
\begin{aligned}
\int \frac{d y}{y} & =2 \int \sec ^{2} x-1 d x \\
\ln |y| & =2\left(\tan x-x+C_{1}\right) \\
|y| & =e^{2\left(\tan x-x+C_{1}\right)} \\
y & =C e^{2 \tan x-2 x}
\end{aligned}
$$

And we are done.
6. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$. Solution: Rewriting this equation with $d y / d x$ notation, we have $y x \frac{d y}{d x}=$ $\left(x^{2}-1\right)$. Separating variables, we get $y d y=\frac{x^{2}-1}{x} d x$. The computation then follows as:

$$
\begin{aligned}
& \int y d y=\int x-(1 / x) d x \\
& y^{2} / 2=x^{2} / 2-\ln |x|+C_{1} \\
& y^{2}=x^{2}-2 \ln |x|+C
\end{aligned}
$$

And we are done.

Answer Key

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$. $y=C e^{x^{3} / 3-2 x}$.
2. Compute the particular solution to the differential equation $y^{\prime}=y+2$ with initial condition $y(0)=0$.
$y=-2+2 e^{x}$
3. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
General solution: $y=\ln \left(-x^{4} / 4+C\right)$ Particular solution: $y=\ln \left(-x^{4} / 4\right)$
4. Compute the particular solution to the differential equation $y^{\prime}=e^{2 x} y^{4}$ with initial condition $y(0)=1$.
$y=\left((-3 / 2) e^{2 x}+5 / 2\right)^{-1 / 3}$
5. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ 1).
$y=C e^{2 \tan x-2 x}$
6. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$. $y^{2}=x^{2}-2 \ln |x|+C$
