Homework

1. Verify (by plugging in) that $y=e^{-3 x}+2 x+3$ is a solution to the differential equation $y^{\prime}+3 y=6 x+11$.
2. Verify that $y=\pi e^{-\cos x}$ is a solution to the differential equation $y^{\prime}=$ $y \sin x$.
3. Find the general solution to the differential equation $y^{\prime}=\sin x+x$.
4. Solve for the particular solution to the differential equation $y^{\prime}=2 x \cos \left(x^{2}\right)$ satisfying $y(0)=3$. (Recall that a problem of this form is called an initial value problem.)
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$
6. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$.
7. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$.

Solutions

1. Verify (by plugging in) that $y=e^{-3 x}+2 x+3$ is a solution to the differential equation $y^{\prime}+3 y=6 x+11$.
Solution: In order to verify that $y=e^{-3 x}+2 x+3$ is a solution, we must first take the derivative to get y^{\prime}. Doing so, we get $y^{\prime}=-3 e^{-3 x}+2$. Plugging in our values for y and y^{\prime}, we get

$$
\begin{aligned}
y^{\prime}+3 y & =\left(-3 e^{-3 x}+2\right)+3\left(e^{-3 x}+2 x+3\right) \\
& =-3 e^{-3 x}+3 e^{-3 x}+6 x+2+9 \\
& =6 x+11 .
\end{aligned}
$$

And we are done.
2. Verify that $y=\pi e^{-\cos x}$ is a solution to the differential equation $y^{\prime}=$ $y \sin x$.
Solution: In order to verify that $y=\pi e^{-\cos x}$ is a solution, we must first take it's derivative to get y^{\prime}. Doing so, we get $y^{\prime}=\pi e^{-\cos x}(\sin x)$. Plugging in our values for y, y^{\prime}, we get

$$
\begin{aligned}
y^{\prime} & =\pi e^{-\cos x} \sin x \\
& =y \sin x .
\end{aligned}
$$

And we are done.
3. Find the general solution to the differential equation $y^{\prime}=\sin x+x$.

Solution: Since x is the only variable in the differential equation, we may integrate both sides with respect to x as follows:

$$
\begin{aligned}
y^{\prime} & =\sin x+x \\
\int y^{\prime} d x & =\int \sin x+x d x \\
y & =-\cos x+x^{2} / 2+C
\end{aligned}
$$

And we are done.
4. Solve for the particular solution to the differential equation $y^{\prime}=2 x \cos \left(x^{2}\right)$ satisfying $y(0)=3$. (Recall that a problem of this form is called an initial value problem.)

Solution: To find the particular solution, we start by solving for the general
solution. The method here is the same as for the previous problem.

$$
\begin{aligned}
y^{\prime} & =2 x \cos \left(x^{2}\right) \\
\int y^{\prime} d x & =\int 2 x \cos \left(x^{2}\right) d x \\
& =\int \cos (u) d u \quad\left(u=x^{2}\right) \\
y & =\sin u+C \\
& =\sin \left(x^{2}\right)+C
\end{aligned}
$$

We now solve for the correct value of C which satisfies the initial condition. Plugging in the initial condition, we have

$$
3=y(0)=\sin \left(0^{2}\right)+C=0+C=C .
$$

Hence, $C=3$ giving us the particular solution $y=\sin \left(x^{2}\right)+3$.
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$

Solution: At each point with x, y integers between -3 and 3 , compute the slope according to the function $y^{\prime}=f(x, y)$ and plot it on a graph as seen in the diagrams below.
(a)

(b)

6. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$.

Solution: To estimate $y(0.3)$ with a step size of $h=0.1$ starting at 0 requires taking 3 steps. We first express y^{\prime} as a function $f(x, y)$. Since $y^{\prime}+3 y=x^{2}$, we have $y^{\prime}=x^{2}-3 y=f(x, y)$. To begin the Euler's method algorithm, we begin with $x_{0}=0, y_{0}=2$.

$$
\begin{aligned}
& x_{1}=X_{0}+h=0+0.1=0.1 \\
& y_{1}=y_{0}+h * f\left(x_{0}, y_{0}\right)=2+0.1 *(0-3 * 2)=1.4 \\
& x_{2}=x_{1}+h=0.1+0.1=0.2 \\
& y_{2}=y_{1}+h * f\left(x_{1}, y_{1}\right)=1.4+0.1 *\left(0.1^{2}-3 * 1.4\right)=.981 \\
& x_{3}=x_{2}+h=0.2+0.1=0.3 \\
& y_{3}=y_{2}+h * f\left(x_{2}, y_{2}\right)=.981+0.1 *\left(0.2^{2}-3 * .981\right)=.6907
\end{aligned}
$$

We have thus found $y(0.3) \simeq y_{3}=.6907$ and we are done.
7. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$.
To estimate $y(1.4)$ with a step size of $h=0.1$ starting at 1 requires taking 4 steps. We first express y^{\prime} as a function $f(x, y)$. Since $y y^{\prime}=x$, we have $y^{\prime}=x / y=f(x, y)$. To begin the Euler's method algorithm, we begin with

$$
\begin{aligned}
x_{0} & =1, y_{0}=-3 \\
x_{1} & =X_{0}+h=1+0.1=1.1 \\
y_{1} & =y_{0}+h * f\left(x_{0}, y_{0}\right)=-3+0.1 *(1 /-3) \simeq-3.03333 \\
x_{2} & =x_{1}+h=1.1+0.1=1.2 \\
y_{2} & =y_{1}+h * f\left(x_{1}, y_{1}\right) \simeq-3.03333+0.1 *(1.1 /-3.03333) \simeq-3.0696 \\
x_{3} & =x_{2}+h=1.2+0.1=1.3 \\
y_{3} & =y_{2}+h * f\left(x_{2}, y_{2}\right) \simeq-3.0696+0.1 *(1.2 /-3.0696) \simeq-3.1087 \\
x_{4} & =x_{3}+h=1.3+0.1=1.4 \\
y_{4} & =y_{3}+h * f\left(x_{2}, y_{2}\right) \simeq-3.1087+0.1 *(1.3 /-3.1087) \simeq-3.1505
\end{aligned}
$$

We have thus found $y(1.4) \simeq y_{4} \simeq-3.1505$ and we are done.

Answer Key

1. Verify (by plugging in) that $y=e^{-3 x}+2 x+3$ is a solution to the differential equation $y^{\prime}+3 y=6 x+11$.

$$
\begin{aligned}
y^{\prime}+3 y & =\left(-3 e^{-3 x}+2\right)+3\left(e^{-3 x}+2 x+3\right) \\
& =-3 e^{-3 x}+3 e^{-3 x}+6 x+2+9 \\
& =6 x+11
\end{aligned}
$$

2. Verify that $y=\pi e^{-\cos x}$ is a solution to the differential equation $y^{\prime}=$ $y \sin x$.

$$
\begin{aligned}
y^{\prime} & =\pi e^{-\cos x} \sin x \\
& =y \sin x
\end{aligned}
$$

3. Find the general solution to the differential equation $y^{\prime}=\sin x+x$.
$y=-\cos x+x^{2} / 2+C$.
4. Solve for the particular solution to the differential equation $y^{\prime}=2 x \cos \left(x^{2}\right)$ satisfying $y(0)=3$. (Recall that a problem of this form is called an initial value problem.)
$y=\sin \left(x^{2}\right)+3$.
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$

6. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$. $y(0.3) \simeq .6907$
7. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$.
$y(1.4) \simeq-3.1505$
