MAT 127 HW 26-28

1. Problems

1. Determine if the following series converges.

$$
\sum_{n=1}^{\infty}\left(\frac{\ln (n)}{n}\right)^{4}
$$

2. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n+2}
$$

3. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

4. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}}
$$

5. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \cos (n)
$$

2. Answer Key

1. Converges.
2. Diverges.
3. Conditionally Converges.
4. Converges absolutely.
5. Diverges.

3. Solutions

1. Consider

$$
\sum_{n=1}^{\infty}\left(\frac{\ln (n)}{n}\right)^{4}
$$

We will do a limit comparison with $\frac{1}{n^{2}}$. So compute

$$
\lim _{n \rightarrow \infty} \frac{\left(\frac{\ln (n)}{n}\right)^{4}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{(\ln (n))^{4}}{n^{2}} \stackrel{\star}{=} 4 \lim _{n \rightarrow \infty} \frac{\ln (n)}{n^{2}} \stackrel{\star}{=} 4 \lim _{n \rightarrow \infty} \frac{1}{2 n^{2}}=0
$$

Where at \star we applied L'Hôpital's rule. And by limit comparison we have

$$
\sum_{n=1}^{\infty}\left(\frac{\ln (n)}{n}\right)^{4}
$$

converges.
2. Consider:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n+2}
$$

We note that

$$
\lim n \rightarrow \infty(-1)^{n+1} \frac{n}{n+2} \neq 0
$$

Thus, the series diverges.
3. Consider:

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

We see that $\frac{1}{\sqrt{n}-2}$ is decreasing and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}-2}=0
$$

So by the alternating series test this series converges. Now consider

$$
\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}
$$

We note that $\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{n}-2}$. And by the p-test we have that $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}$. diverges so by comparison we that $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}$ diverges. Thus,

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

converges conditionally.
4. Consider:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}}
$$

Note that $\left|(-1)^{n+1} \sin (n)\right| \leq 1$ so $\frac{\left|(-1)^{n+1} \sin (n)\right|}{n^{5}} \leq \frac{1}{n^{5}}$. And by the p-test we know that $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges so by comparison we have $\sum_{n=1}^{\infty} \frac{\left|(-1)^{n+1} \sin (n)\right|}{n^{5}}$ converges. Thus,

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}}
$$

converges absolutely.
5. Consider

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \cos (n)
$$

Note that

$$
\lim _{n \rightarrow \infty}(-1)^{n+1} \cos (n)
$$

does not exist. Thus the series diverges.

