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MAT 127 HW 26-28

1. PROBLEMS

Determine if the following series converges.

i (lnr(ln)>4
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. Determine if the following series converges absolutely,
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. Determine if the following series converges absolutely,
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Determine if the following series converges absolutely,
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. Determine if the following series converges absolutely,
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2. ANSWER KEY

Converges.

Diverges.

Conditionally Converges.
Converges absolutely.
Diverges.

3. SOLUTIONS
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We will do a limit comparison with # So compute
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conditionally, or not at all.

conditionally, or not at all.

conditionally, or not at all.

conditionally, or not at all.
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Where at x we applied L’Hopital’s rule. And by limit comparison we have

()

converges.
. Consider:
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;( ) n-+ 2

We note that n
limn — oo(—1)""'—— #£0.

n+ 2
Thus, the series diverges.
. Consider:
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We see that \/5172 is decreasing and
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So by the alternating series test this series converges. Now consider
>
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We note that ﬁ < \/5172. And by the p-test we have that ) ° . ﬁ diverges so

by comparison we that » > ﬁ diverges. Thus,
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converges conditionally.
. Consider:
oo .
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Note that |(—1)"*!sin(n)| < 1 so %ﬁsm(n)l < nls. And by the p-test we know
\(—U"*;sin(n)\

that y >, % converges so by comparison we have y | - converges.
Thus,
o .
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converges absolutely.
. Consider
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Z:(—l)’”rl cos(n).
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Note that
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does not exist. Thus the series diverges.
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