MAT 127 HW 18-19

1. Problems

1. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$
f(x)=(1-x)^{\frac{1}{5}}
$$

2. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$
f(x)=\left(1-x^{2}\right)^{-\frac{1}{5}}
$$

3. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$
f(x)=(1-3 x)^{\frac{2}{5}}
$$

4. Estimate the error of the degree two taylor polynomial centered at 0 on $[-1,1]$ of

$$
f(x)=e^{2 x} .
$$

5. Estimate the error of the degree two taylor polynomial centered at 0 on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ of

$$
f(x)=\sec (x) .
$$

2. Answer Key

1. Maclaurin series is

$$
(1-x)^{\frac{1}{5}}=\sum_{n=0}^{\infty}\binom{\frac{1}{5}}{n}(-x)^{n}
$$

and

$$
T_{2}(x)=1-\frac{1}{5} x+\frac{-2}{25} x^{2} .
$$

2. Maclaurin series is

$$
\left(1-x^{2}\right)^{\frac{-1}{5}}=\sum_{n=0}^{\infty}\binom{\frac{-1}{5}}{n}\left(-x^{2}\right)^{n}
$$

and

$$
T_{2}(x)=1+\frac{1}{5} x^{2}+\frac{2}{25} x^{4}
$$

3. Maclaurin series is

$$
(1-2 x)^{\frac{2}{5}}=\sum_{n=0}^{\infty}\binom{\frac{2}{5}}{n}(-2 x)^{n}
$$

and

$$
T_{2}(x)=1+\frac{-4}{5} x+\frac{-3}{25} x^{2}
$$

4.

$$
\left|R_{2}(x)\right| \leq \frac{8 e^{2}}{6}=\frac{4 e^{2}}{3}
$$

5.

$$
\left|R_{2}(x)\right| \leq \frac{14}{9} \cdot \frac{\pi}{6}=\frac{14 \pi}{54}=\frac{7 \pi}{27}
$$

3. Solutions

1. Using the formula:

$$
(1+x)^{r}=\sum_{n=0}^{\infty}\binom{r}{n} x^{n}
$$

We see that the Maclaurin series is

$$
(1-x)^{\frac{1}{5}}=\sum_{n=0}^{\infty}\binom{\frac{1}{5}}{n}(-x)^{n}
$$

and

$$
T_{2}(x)=1-\frac{1}{5} x+\frac{-2}{25} x^{2} .
$$

2. Using the formula:

$$
(1+x)^{r}=\sum_{n=0}^{\infty}\binom{r}{n} x^{n} .
$$

We see that the Maclaurin series is

$$
\left(1-x^{2}\right)^{\frac{-1}{5}}=\sum_{n=0}^{\infty}\binom{\frac{-1}{5}}{n}\left(-x^{2}\right)^{n}
$$

and

$$
T_{2}(x)=1+\frac{1}{5} x^{2}+\frac{2}{25} x^{4} .
$$

3. Using the formula:

$$
(1+x)^{r}=\sum_{n=0}^{\infty}\binom{r}{n} x^{n}
$$

We see that the Maclaurin series is

$$
(1-2 x)^{\frac{2}{5}}=\sum_{n=0}^{\infty}\binom{\frac{2}{5}}{n}(-2 x)^{n}
$$

and

$$
T_{2}(x)=1+\frac{-4}{5} x+\frac{-3}{25} x^{2} .
$$

4. Use the formula:

$$
\left|R_{2}(x)\right| \leq \frac{\max _{[-1,1]} f^{\prime \prime \prime}(x)}{3!}|x|^{3} .
$$

Note that $f(x)=e^{2 x}$ and so $f^{\prime \prime \prime}(x)=8 e^{2 x}$. And so the $\max _{[-1,1]} f^{\prime \prime \prime}(x)=8 e^{2}$. Also on $[-1,1]$ we have $|x| \leq 1$. So

$$
\left|R_{2}(x)\right| \leq \frac{8 e^{2}}{6}=\frac{4 e^{2}}{3}
$$

5. Use the formula:

$$
\left|R_{2}(x)\right| \leq \frac{\max _{\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]} f^{\prime \prime \prime}(x)}{3!}|x|^{3} .
$$

Note that $f(x)=\sec (x)$ and so

$$
f^{\prime \prime \prime}(x)=5 \tan (x) \sec ^{3}(x)+\tan ^{3}(x) \sec (x) .
$$

As $\tan x$ is increasing on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ and $\sec x$ is even and increasing on $\left[0, \frac{\pi}{6}\right]$ we see that

$$
\max _{\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]} f^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(1)=\frac{14}{3} .
$$

Also on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ we have $|x| \leq \frac{\pi}{6}$. So

$$
\left|R_{2}(x)\right| \leq \frac{14}{9} \cdot \frac{\pi}{6}=\frac{14 \pi}{54}=\frac{7 \pi}{27} .
$$

