MAT 127 HW 18-19

1. Problems

1. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$f(x) = (1-x)^{\frac{1}{5}}$$

2. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$f(x) = (1 - x^2)^{-\frac{1}{5}}$$

3. Find the Maclaurin series of the following function. And find the degree two taylor polynomial centered at zero.

$$f(x) = (1 - 3x)^{\frac{2}{5}}$$

4. Estimate the error of the degree two taylor polynomial centered at 0 on [-1, 1] of

$$f(x) = e^{2x}$$

5. Estimate the error of the degree two taylor polynomial centered at 0 on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ of

$$f(x) = \sec(x).$$

- 2. Answer Key
- 1. Maclaurin series is

$$(1-x)^{\frac{1}{5}} = \sum_{n=0}^{\infty} {\binom{\frac{1}{5}}{n}} (-x)^n$$

and

$$T_2(x) = 1 - \frac{1}{5}x + \frac{-2}{25}x^2.$$

2. Maclaurin series is

$$(1-x^2)^{\frac{-1}{5}} = \sum_{n=0}^{\infty} {\binom{-1}{5} \choose n} (-x^2)^n$$

and

$$T_2(x) = 1 + \frac{1}{5}x^2 + \frac{2}{25}x^4.$$

3. Maclaurin series is

$$(1-2x)^{\frac{2}{5}} = \sum_{n=0}^{\infty} {\binom{2}{5} \choose n} (-2x)^n$$

and

$$T_2(x) = 1 + \frac{-4}{5}x + \frac{-3}{25}x^2.$$

4.

$$|R_2(x)| \le \frac{8e^2}{6} = \frac{4e^2}{3}.$$

5.

$$|R_2(x)| \le \frac{14}{9} \cdot \frac{\pi}{6} = \frac{14\pi}{54} = \frac{7\pi}{27}.$$

3. Solutions

1. Using the formula:

$$(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n.$$

We see that the Maclaurin series is

$$(1-x)^{\frac{1}{5}} = \sum_{n=0}^{\infty} {\binom{\frac{1}{5}}{n}} (-x)^n$$

and

$$T_2(x) = 1 - \frac{1}{5}x + \frac{-2}{25}x^2.$$

2. Using the formula:

$$(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n.$$

We see that the Maclaurin series is

$$(1-x^2)^{\frac{-1}{5}} = \sum_{n=0}^{\infty} {\binom{-1}{5} \choose n} (-x^2)^n$$

and

$$T_2(x) = 1 + \frac{1}{5}x^2 + \frac{2}{25}x^4.$$

3. Using the formula:

$$(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n.$$

We see that the Maclaurin series is

$$(1-2x)^{\frac{2}{5}} = \sum_{n=0}^{\infty} {\binom{\frac{2}{5}}{n}} (-2x)^n$$

and

$$T_2(x) = 1 + \frac{-4}{5}x + \frac{-3}{25}x^2.$$

4. Use the formula:

$$|R_2(x)| \le \frac{\max_{[-1,1]} f'''(x)}{3!} |x|^3.$$

Note that $f(x) = e^{2x}$ and so $f'''(x) = 8e^{2x}$. And so the $\max_{[-1,1]} f'''(x) = 8e^2$. Also on [-1,1] we have $|x| \le 1$. So

$$|R_2(x)| \le \frac{8e^2}{6} = \frac{4e^2}{3}.$$

5. Use the formula:

$$|R_2(x)| \le \frac{\max_{\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]} f'''(x)}{3!} |x|^3.$$

Note that $f(x) = \sec(x)$ and so

$$f'''(x) = 5\tan(x)\sec^3(x) + \tan^3(x)\sec(x).$$

As $\tan x$ is increasing on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ and $\sec x$ is even and increasing on $\left[0, \frac{\pi}{6}\right]$ we see that

$$\max_{\left[-\frac{\pi}{6},\frac{\pi}{6}\right]} f'''(x) = f'''(1) = \frac{14}{3}.$$

Also on $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ we have $|x| \leq \frac{\pi}{6}$. So

$$|R_2(x)| \le \frac{14}{9} \cdot \frac{\pi}{6} = \frac{14\pi}{54} = \frac{7\pi}{27}.$$