MAT 127 HW 1-5

1. Problems

1. Suppose $\lim _{n \rightarrow \infty} a_{n}=1$ and $\lim _{n \rightarrow \infty} b_{n}=-1$. Find

$$
\lim _{n \rightarrow \infty}\left(5 a_{n}-8 b_{n}\right)
$$

2. Determine if the sequence

$$
a_{n}=\frac{2}{3^{n}}, n \geq 1
$$

is bounded and whether it is eventually monotone, increasing, or decreasing.
3. Determine if the sequence

$$
a_{n}=\frac{5^{n}}{n!}, n \geq 1 .
$$

converges and if it does find the limit.
4. Write the following sum in summation notation.

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots
$$

5. Write the first three partial sums S_{1}, S_{2}, S_{3} for the series having nth term $a_{n}=$ $2 n+1$ starting with $n=1$.

2. Answer Key

1. 13.
1. Bounded. Eventually decreasing.
2. Convergent. Limit is 0 .
3. $\Sigma_{n=0}^{\infty} \frac{1}{3^{n}}$
4. $S_{1}=3, S_{2}=8, S_{3}=15$

3. Solutions

1. $\lim _{n \rightarrow \infty}\left(5 a_{n}-8 b_{n}\right)=5 \lim _{n \rightarrow \infty} a_{n}-8 \lim _{n \rightarrow \infty} b_{n}=5+8=13$.
2. Since for all $n \geq 1$ we have that $0 \geq 2 \leq 3^{n}$, we see that $0 \leq a_{n} \leq 1$. So the sequence is bounded. Now consider

$$
\frac{a_{n+1}}{a_{n}}=\frac{2 \cdot 3^{n}}{2 \cdot 3^{n+1}}=\frac{1}{3}<1 .
$$

Thus, $a_{n+1}<a_{n}$.
3.

$$
a_{n+1}=\frac{5^{n+1}}{(n+1)!}=\frac{5}{n+1} \cdot \frac{5^{n}}{n!}=\frac{5}{n+1} \cdot a_{n}
$$

Thus, a_{n} is decreasing when $n \geq 4$. And we note $a_{n} \geq 0$ for all n. Thus, a_{n} is convergent and call the limit L. Moreover,

$$
a_{n+1}=\frac{5}{\substack{n+1 \\ 1}} \cdot a_{n}
$$

So

$$
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{5}{n+1} \cdot a_{n}
$$

Thus,

$$
L=0 \cdot L .
$$

And we conclude $L=0$.
4. We notice that

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots=\frac{1}{3^{0}}+\frac{1}{3^{1}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\cdots
$$

Thus, this is the sum of the terms of sequence $a_{n}=\frac{1}{3^{n}}$ where $n \geq 0$. Therefore, in summation notation we have $\Sigma_{n=0}^{\infty} \frac{1}{3^{n}}$.
5. $S_{1}=a_{1}=3, S_{2}=a_{1}+a_{2}=3+5=8, S_{3}=a_{1}+a_{2}+a_{3}=3+5+7=15$

