MAT 126 HW 9

1. Problems

1. Compute the following indefinite integral using integration by parts:

$$
\int x \cos (5 x+3) d x
$$

2. Compute the following indefinite integral using integration by parts:

$$
\int x^{2} e^{-2 x} d x
$$

3. Compute the following indefinite integral using integration by parts:

$$
\int t^{7} \sin \left(3 t^{4}\right) d t
$$

(HINT: First perform a u-substitution, then do integration by parts). 4. Compute the following definite integral using integration by parts:

$$
\int_{0}^{\pi} e^{x} \sin x d x
$$

5. Compute the following indefinite integral using integration by parts:

$$
\int t^{99} \ln t d t
$$

2. Answer Key
3.

$$
\frac{x \sin (5 x+3)}{5}+\frac{\cos (5 x+3)}{25}+C
$$

2.

$$
-\frac{1}{2}\left(x^{2}+x+\frac{1}{2}\right) e^{-2 x}+C
$$

3.

$$
\frac{1}{36}\left(3 t^{4} \cos \left(3 t^{4}\right)+\sin \left(3 t^{4}\right)\right)
$$

4.

$$
\frac{e^{\pi}+1}{2}
$$

5.

$$
\frac{t^{100} \ln t}{100}-\frac{t^{100}}{10000}+C
$$

3. Solutions

1. Letting $u=x$ and $d v=\cos (5 x+3) d x$ gives us $d u=d x$ and $v=\frac{1}{5} \sin (5 x+3) d x$. Hence we get

$$
\begin{aligned}
\int x \cos (5 x+3) d x & =\frac{x \sin (5 x+3)}{5}-\frac{1}{5} \int \sin (5 x+3) \\
& =\frac{x \sin (5 x+3)}{5}+\frac{\cos (5 x+3)}{25}+C
\end{aligned}
$$

2. We have to do integration by parts twice. Letting $u=x^{2}$ and $d v=e^{-2 x} d x$ gives us $d u=2 x d x$ and $v=-\frac{1}{2} e^{-2 x}$. This gives us

$$
\int x^{2} e^{-2 x} d x=-\frac{1}{2} x^{2} e^{-2 x}+\int x e^{-2 x} d x
$$

Again performing integration by parts with $u=x$ and $d v=e^{-2 x} d x$ gives us

$$
\int x e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+C .
$$

Putting this all together, we get

$$
\begin{aligned}
\int x^{2} e^{-2 x} d x & =-\frac{1}{2} x^{2} e^{-2 x}-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+C \\
& =-\frac{1}{2}\left(x^{2}+x+\frac{1}{2}\right) e^{-2 x}+C .
\end{aligned}
$$

3. First we perform a substitution (we'll use the letter x to not confuse our new variable with the u in integration by parts). Let $x=3 t^{4}$ so that $d x=12 t^{3}$. We get

$$
\int t^{7} \sin \left(3 t^{4}\right) d t=\int \frac{1}{12} t^{4} \sin x d x
$$

Notice that $t^{4}=x / 3$ so this integral equals $(1 / 36) \int x \sin x d x$. Now we can perform integration by parts with $u=x$ and $d v=\sin x d x$ which gives us

$$
\int \frac{1}{12} t^{4} \sin x d x=\frac{1}{36}\left(-x \cos x+\int \cos x\right)=\frac{1}{36}(-x \cos x+\sin x)+C
$$

Substituting back into the variable t we finally get

$$
\int t^{7} \sin \left(3 t^{4}\right) d t=\frac{1}{36}\left(-3 t^{4} \cos \left(3 t^{4}\right)+\sin \left(3 t^{4}\right)\right)+C .
$$

4. This one needs a trick that was shown in the lecture. Let $I=\int e^{x} \sin x d x$. Doing integration by parts with $u=\sin x$ and $d v=e^{x} d x$ gives us

$$
I=e^{x} \sin x-\int e^{x} \cos x d x
$$

Again performing integration by parts in the same way with $u=\cos x$ and $d v=$ $e^{x} d x$ gives us

$$
I=e^{x} \sin x-\int e^{x} \cos x d x=e^{x} \sin x-e^{x} \cos x-I
$$

Adding I to both sides and then dividing by 2 yields

$$
I=\frac{e^{x} \sin x-e^{x} \cos x}{2}
$$

Now we substitute at $x=0$ and $x=\pi$

$$
\int_{0}^{\pi} e^{x} \sin x d x=\left.\frac{e^{x} \sin x-e^{x} \cos x}{2}\right|_{0} ^{\pi}=\frac{e^{\pi}+1}{2}
$$

5. Let $u=\ln t$ and $d v=t^{99} d t$ so that $d u=\frac{d t}{t}$ and $v=\frac{1}{100} t^{100}$. Then we get

$$
\int t^{99} \ln t d t=\frac{t^{100} \ln t}{100}-\frac{1}{100} \int t^{99} d t=\frac{t^{100} \ln t}{100}-\frac{t^{100}}{10000}+C
$$

