MAT126 Homework 4-5

Problems

1. Compute the following limit:

Hint: The limit can be expressed as a definite integral.

2. Compute the following definite integral:
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3. Compute the following definite integral:
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4. Compute the following definite integral:
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5. If the velocity of an object is given by
v(t) = —9.8t + 10,

where

find the total displacement of the object after 2 seconds.

6. If
t

cos(x)
f(z) = / tsin(t) + 6Tealt,
1
find f'(z).

7. Find the extrema of the function
2

F@) = [ 196 — 3.
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5. The total displacement of the object after 2 seconds is 0.4.

6€cos(m)

6. f'(x) = cos(x)sin(cos(z))(— sin(x)) + (—sin(z))

cos(x)

7. f has minima at z = :l:% and has a maximum at x = 0.



Solutions
1. Notice that
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= arctan(z)

0
= arctan(1) — arctan(0)
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2. We have
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/j sec? (x) — 6.¢csc () cot (z) dr = tan(x) + 6 csc(x)
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3. First, notice that we can rewrite
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The power rule for integration implies that
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4. We have




5. The total displacement after 2 seconds is given by

2

2
/ —9.8t + 10dt = (—4.9t* + 10¢)
0 0

= —4.9(2)% + 10(2)
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6. By the Fundamental Theorem of Calculus and the chain rule, we have
that

6ecos(w)

f'(x) = cos(z) sin(cos(z))(—sin(z)) + (—sin(z))

cos(x)

7. By the Fundamental Theorem of Calculus and the chain rule, we have
that

f(x) = (122% - 3) (22)

It follows that f'(z) = 0 when = £3 or when & = 0. The first derivative
test implies that f has minima at x = :i:% and has a maximum at x = 0.



