MAT126 Homework 2-3

Problems

1. If the acceleration of an object is $a(t)=-32$, the initial velocity of the object is $v(0)=6$, and the initial position of the object is $s(0)=10$, find the position of the object at time $t=1$.
2. Estimate the area under the curve $f(x)=4 x-x^{2}$ between $x=0$ and $x=4$ using
(a) 4 left hand rectangles
(b) 4 right hand rectangles
3. Given the following table,

x	0	1	2	3	4	5	6
$f(x)$	1	2	5	9	17	26	37

(a) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a left hand Riemann sum with 6 rectangles of equal width,
(b) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a right hand Riemann sum with 6 rectangles of equal width.
(c) estimate the area under $f(x)$ between $x=0$ and $x=6$ using a midpoint Riemann sum with 3 rectangles of equal width.
4. Write down the Riemann sum which approximates the area under $f(x)=$ $x^{2}-1$ from $x=0$ to $x=2$ using n rectangles of equal width and right endpoints as heights of the rectangles.
5. The following sum can be interpreted as a right hand Riemann sum approximating the area under a curve $y=f(x)$ between $x=8$ and $x=10$ using n rectangles of equal width. Find the function $f(x)$.

$$
\sum_{i=1}^{n} \sqrt{8+\frac{2 i}{n}} \frac{2}{n}
$$

Answer Key

1. $s(1)=0$
2. (a) The left hand Riemann sum is equal to 10 .
(b) The right hand Riemann sum is equal to 10 .
3. (a) The left hand Riemann sum is equal to 60 .
(b) The right hand Riemann sum is equal to 96 .
(c) The midpoint Riemann sum is equal to 74 .
4. $\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}-\frac{2}{n}$
5. $f(x)=\sqrt{x}$

Solutions

1. The velocity of the object is antiderivative of the acceleration and is given by

$$
v(t)=-32 t+C .
$$

Since the inital velocity of the object is $v(0)=6$,

$$
6=-32(0)+C=C .
$$

It follows that

$$
v(t)=-32 t+6
$$

The position of the object is the antiderivative of the velocity and is given by

$$
s(t)=-16 t^{2}+6 t+C
$$

Since the inital position of the object is $s(0)=10$,

$$
10=-16(0)^{2}+6(0)+C=C
$$

It follows that

$$
s(t)=-16 t^{2}+6 t+10 .
$$

Plugging in $t=1$ gives

$$
s(1)=-16(1)^{2}+6(1)+10=0 .
$$

2. The width of each rectangle is given by $\Delta x=\frac{4-0}{4}=1$.
(a) The left hand Riemann sum is given by

$$
(f(0)+f(1)+f(2)+f(3)) \Delta x=(0+3+4+3)(1)=10
$$

(b) The right hand Riemann sum is given by

$$
(f(1)+f(2)+f(3)+f(4)) \Delta x=(3+4+3+0)(1)=10
$$

3. (a) The width of each rectangle is given by $\Delta x=\frac{6-0}{6}=1$. The left hand Riemann sum is given by

$$
\begin{aligned}
(f(0)+f(1)+f(2)+f(3)+f(4)+f(5)) \Delta x & =(1+2+5+9+17+26)(1) \\
& =60
\end{aligned}
$$

(b) The width of each rectangle is given by $\Delta x=\frac{6-0}{6}=1$. The right hand Riemann sum is given by

$$
\begin{aligned}
(f(1)+f(2)+f(3)+f(4)+f(5)+f(6)) \Delta x & =(2+5+9+17+26+37)(1) \\
& =96
\end{aligned}
$$

(c) The width of each rectangle is given by $\Delta x=\frac{6-0}{3}=2$. The midpoint Riemann sum is given by

$$
(f(1)+f(3)+f(5)+) \Delta x=(2+9+26)(2)=74
$$

4. The width of each rectangle is given by $\Delta x=\frac{2-0}{n}=\frac{2}{n}$. Since we are using right endpoints, the height of the $i^{t h}$ is given by

$$
f\left(\frac{2 i}{n}\right)=\left(\frac{2 i}{n}\right)^{2}-1
$$

It follows that the right hand Riemann sum is given by

$$
\sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \Delta x=\sum_{i=1}^{n}\left(\left(\frac{2 i}{n}\right)^{2}-1\right) \frac{2}{n}=\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}-\frac{2}{n}
$$

5. Let $f(x)=\sqrt{x}$. Then n evenly spaced rectangles between $x=8$ and $x=10$ have width $\Delta x=\frac{10-8}{n}=\frac{2}{n}$. Using right endpoints, the height of the $i^{t h}$ rectangle is given by

$$
f\left(8+\frac{2 i}{n}\right)=\sqrt{8+\frac{2 i}{n}}
$$

and it follows that the right hand Riemann sum approximating the area under $f(x)$ is

$$
\sum_{i=1}^{n} \sqrt{8+i \frac{2}{n}} \frac{2}{n}
$$

