MAT126 Homework 1

Problems

- 1. Find the derivative of $f(x) = x^7 + \cos(3x) + e^{x^2}$.
- 2. Find the derivative of $f(x) = \frac{x^2 e^x}{\tan(\pi x)}$.
- 3. If f(3) = 10, f'(3) = 7, g(3) = 3, g'(3) = -4, find
 - (a) (fg)'(3)(b) $(\frac{f}{g})'(3)$
 - (c) $(f \circ g)'(3)$

4. Find the general antiderivative of $f(x) = x^{\frac{1}{3}} + \frac{1}{x} + \sec(x)\tan(x) + 2e^x$.

5. Find the antiderivative of $f(x) = \frac{x^2 + 3x + 27}{x^2}$ if F(1) = 0.

6. If $f(x) = \frac{1}{1+x^2} + \sec^2(x)$ and $F(0) = \pi$, find $F(\pi/4)$.

Answer Key

1. $f'(x) = 7x^6 - 3\sin(3x) + 2xe^{x^2}$. 2. $f'(x) = \frac{(2xe^x + x^2e^x)\tan(\pi x) - (x^2e^x)\pi\sec^2(\pi x)}{\tan^2(\pi x)}$. 3. (a) (fg)'(3) = 58. (b) $\left(\frac{f}{g}\right)'(3) = \frac{82}{9}$. (c) $(f \circ g)'(3) = -40$. 4. $F(x) = \frac{3}{4}x^{\frac{4}{3}} + \ln(x) + \sec(x) + 2e^x + C$. 5. $F(x) = x + 3\ln(x) - \frac{27}{x} + 26$. 6. $F(\frac{\pi}{4}) = \arctan(\frac{\pi}{4}) + \frac{\sqrt{2}}{2} + \pi$.

Solutions

1.
$$f'(x) = 7x^6 - 3\sin(3x) + 2xe^{x^2}$$
.
2. $f'(x) = \frac{(2xe^x + x^2e^x)\tan(\pi x) - (x^2e^x)\pi\sec^2(\pi x)}{\tan^2(\pi x)}$.

3. (a) By the product rule,

$$(fg)'(3) = f'(3)g(3) + f(3)g'(3) = 10(7) + 3(-4) = 70 - 12 = 58.$$

(b) By the quotient rule,

$$\left(\frac{f}{g}\right)'(3) = \frac{f'(3)g(3) - f(3)g'(3)}{g(3)^2} = \frac{10(7) - 3(-4)}{3^2} = \frac{82}{9}$$

(c) By the chain rule,

$$(f \circ g)'(3) = f(g(3))g'(3) = f(3) * (-4) = 10(-4) = -40.$$

- 4. $F(x) = \frac{3}{4}x^{\frac{4}{3}} + \ln(x) + \sec(x) + 2e^x + C.$
- 5. Notice that $f(x) = 1 + \frac{3}{x} + 27x^{-2}$. Using our basic antiderivatives, we see that the general antiderivative of f(x) is

$$F(x) = x + 3\ln(x) - \frac{27}{x} + C.$$

Since F(1) = 0,

$$0 = 1 + 3\ln(1) - 27 + C = -26 + C.$$

Solving for C gives C = 26. It follows that the antiderivative satisfying F(1) = 0 is

$$F(x) = x + 3\ln(x) - \frac{27}{x} + 26.$$

6. Using our basic antiderivatives, we see that the general antiderivative of f(x) is

$$F(x) = \arctan(x) + \tan(x) + C.$$

Since $F(0) = \pi$,

$$\pi = \arctan(0) + \tan(0) + C = C$$

It follows that $C = \pi$ and the antiderivative satisfying $F(0) = \pi$ is

$$F(x) = \arctan(x) + \tan(x) + \pi.$$

It follows that

$$F\left(\frac{\pi}{4}\right) = \arctan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right) + \pi = \arctan\left(\frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} + \pi.$$