MAT126 Homework 1

Problems

1. Find the derivative of $f(x)=x^{7}+\cos (3 x)+e^{x^{2}}$.
2. Find the derivative of $f(x)=\frac{x^{2} e^{x}}{\tan (\pi x)}$.
3. If $f(3)=10, f^{\prime}(3)=7, g(3)=3, g^{\prime}(3)=-4$, find
(a) $(f g)^{\prime}(3)$
(b) $\left(\frac{f}{g}\right)^{\prime}(3)$
(c) $(f \circ g)^{\prime}(3)$
4. Find the general antiderivative of $f(x)=x^{\frac{1}{3}}+\frac{1}{x}+\sec (x) \tan (x)+2 e^{x}$.
5. Find the antiderivative of $f(x)=\frac{x^{2}+3 x+27}{x^{2}}$ if $F(1)=0$.
6. If $f(x)=\frac{1}{1+x^{2}}+\sec ^{2}(x)$ and $F(0)=\pi$, find $F(\pi / 4)$.

Answer Key

1. $f^{\prime}(x)=7 x^{6}-3 \sin (3 x)+2 x e^{x^{2}}$.
2. $f^{\prime}(x)=\frac{\left(2 x e^{x}+x^{2} e^{x}\right) \tan (\pi x)-\left(x^{2} e^{x}\right) \pi \sec ^{2}(\pi x)}{\tan ^{2}(\pi x)}$.
3. (a) $(f g)^{\prime}(3)=58$.
(b) $\left(\frac{f}{g}\right)^{\prime}(3)=\frac{82}{9}$.
(c) $(f \circ g)^{\prime}(3)=-40$
4. $F(x)=\frac{3}{4} x^{\frac{4}{3}}+\ln (x)+\sec (x)+2 e^{x}+C$.
5. $F(x)=x+3 \ln (x)-\frac{27}{x}+26$.
6. $F\left(\frac{\pi}{4}\right)=\arctan \left(\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2}+\pi$.

Solutions

1. $f^{\prime}(x)=7 x^{6}-3 \sin (3 x)+2 x e^{x^{2}}$.
2. $f^{\prime}(x)=\frac{\left(2 x e^{x}+x^{2} e^{x}\right) \tan (\pi x)-\left(x^{2} e^{x}\right) \pi \sec ^{2}(\pi x)}{\tan ^{2}(\pi x)}$.
3. (a) By the product rule,

$$
(f g)^{\prime}(3)=f^{\prime}(3) g(3)+f(3) g^{\prime}(3)=10(7)+3(-4)=70-12=58
$$

(b) By the quotient rule,

$$
\left(\frac{f}{g}\right)^{\prime}(3)=\frac{f^{\prime}(3) g(3)-f(3) g^{\prime}(3)}{g(3)^{2}}=\frac{10(7)-3(-4)}{3^{2}}=\frac{82}{9} .
$$

(c) By the chain rule,

$$
(f \circ g)^{\prime}(3)=f(g(3)) g^{\prime}(3)=f(3) *(-4)=10(-4)=-40 .
$$

4. $F(x)=\frac{3}{4} x^{\frac{4}{3}}+\ln (x)+\sec (x)+2 e^{x}+C$.
5. Notice that $f(x)=1+\frac{3}{x}+27 x^{-2}$. Using our basic antiderivatives, we see that the general antiderivative of $f(x)$ is

$$
F(x)=x+3 \ln (x)-\frac{27}{x}+C
$$

Since $F(1)=0$,

$$
0=1+3 \ln (1)-27+C=-26+C
$$

Solving for C gives $C=26$. It follows that the antiderivative satisfying $F(1)=0$ is

$$
F(x)=x+3 \ln (x)-\frac{27}{x}+26
$$

6. Using our basic antiderivatives, we see that the general antiderivative of $f(x)$ is

$$
F(x)=\arctan (x)+\tan (x)+C .
$$

Since $F(0)=\pi$,

$$
\pi=\arctan (0)+\tan (0)+C=C
$$

It follows that $C=\pi$ and the antiderivative satisfying $F(0)=\pi$ is

$$
F(x)=\arctan (x)+\tan (x)+\pi .
$$

It follows that

$$
F\left(\frac{\pi}{4}\right)=\arctan \left(\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{4}\right)+\pi=\arctan \left(\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2}+\pi .
$$

