MAT125 Homework for Lectures 23

July 13, 2021

1 Problems

Compute the following limits:
1.

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}
$$

2. Let $f(x)=(\sin (x) / x)^{2}$ be the function from question 1. Compute

$$
\lim _{x \rightarrow 0} f^{\prime}(x)
$$

3.

$$
\lim _{t \rightarrow \infty} t \ln (1+1 / t) .
$$

4.

$$
\lim _{x \rightarrow 0^{+}} x \ln (x) .
$$

5.

$$
\lim _{x \rightarrow \infty} x^{1 / x} .
$$

2 Answer Key

1. 1
2. 0
3. 1
4. 0
5. 1

3 Solution

1. We see that we cannot directly "plug in" 0 but we may use L'Hopital's rule. One application yields $2 \sin (x) \cos (x) / 2 x$. The numerator is equal to $\sin (2 x)$ (a trig identity). So the limit is of $\sin (2 x) / 2 x$ which goes to 1 by a second application of L'Hopital's rule or the standard arguments from trigonometry.
2. By the quotient rule,

$$
f^{\prime}(x)=\frac{x^{2} \sin (2 x)-2 x \sin ^{2}(x)}{x^{4}}=\frac{x \sin (2 x)-2 \sin ^{2}(x)}{x^{3}} .
$$

Next, we see that we cannot directly plug in $x=0$ so we apply L'Hopital's rule. Then

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{\sin (2 x)+2 x \cos (2 x)-2 \sin (2 x)}{3 x^{2}}
$$

We apply L'Hopital's rule again:

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{2 \cos (2 x)-4 x \sin (2 x)-2 \cos (2 x)}{6 x}=\lim _{x \rightarrow 0} \frac{2 \sin (2 x)}{3}=0 .
$$

3. Rewrite the function as $\ln (1+1 / t) /(1 / t)$. Applying L'Hopital's rule, we get that the limit equals

$$
\lim _{t \rightarrow \infty} \frac{\frac{-1 / t^{2}}{1+1 / t}}{-1 / t^{2}}=\lim _{t \rightarrow \infty} \frac{1}{1+1 / t}=1
$$

4. This is a $0 \times-\infty$ situation. Rewrite the function as $\frac{\ln (x)}{1 / x}$. Applying L'Hopital's, this becomes $\frac{1 / x}{-1 / x^{2}}=-x$ The limit of this as $x \rightarrow 0^{+}$is 0 .
5. Let $y=x^{1 / x}$; trivially, $y=e^{\ln (y)}$. But the exponential function is strictly increasing so $\lim _{x \rightarrow \infty} e^{\ln (y)}=\exp \left(\lim _{x \rightarrow 0} \ln (y)\right)$. And $\ln (y)=\frac{\ln (x)}{x}$.
Applying L'Hopital's rule to $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$. And $e^{0}=1$, the final answer.
