MAT125 Homework for Lectures 18-19

July 5, 2021

1 Problems

1. A 25 ft ladder is leaning against a vertical wall. The bottom starts to slide away from the wall at $3 \mathrm{ft} / \mathrm{s}$. How fast is the top sliding down when the top is 20 ft above the ground?
2. A conical tank has a height of 18 m and a radius of 6 m ; it's positioned so that the nose of the cone is pointing groundward. It is filling with water at a rate of $14 \pi \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water rising when the water is 10 m high?
3. A rocket is launched vertically at $4 \mathrm{mi} / \mathrm{s}$ and you're standing 9 mi from the launch site. How fast is the angle of elevation changing after 3 seconds have passed?
4. Let $f(x)=x^{4}-8 x^{2}+10$. Sketch a graph of the function, labeling the local extrema in (x, y)-form.
5. Let $g(x)=\frac{\ln (x)}{x}$. Sketch the graph of the function on its domain of definition, labeling the local extrema in (x, y)-form and also the x-intercept. Also, label the horizontal and vertical asymptotes.

2 Answer Key

1. $\frac{d y}{d t}=-\frac{9}{4} \mathrm{ft} / \mathrm{s}$
2. $\frac{d h}{d t}=\frac{63}{50} \mathrm{~m} / \mathrm{min}$
3. $\frac{d \theta}{d t}=\frac{36}{225} \mathrm{rad} / \mathrm{s}$
4. Local max: $(0,10)$, absolute min: $(\pm 2,-6)$.

5. Absolute max: $\left(e, \frac{1}{e}\right), x$-intercept: $(1,0)$. Horizontal asymptote: $y=0$, vertical asymptote: $x=0$.

3 Solution

1. Let x represent the horizontal distance between the foot of the ladder and the wall. Let y be the distance between the top of the ladder and the ground. Then, $x^{2}+y^{2}=25^{2}$ is one relation between x and y. Differentiating, we get $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$. On the other hand, when $y=20 \mathrm{ft}$, then $x^{2}=625-400=225=15^{2}$. So $x=15 \mathrm{ft}$. So plugging in, we have $2(15 \mathrm{ft})(3 \mathrm{ft} / \mathrm{s})+2(20 \mathrm{ft}) \frac{d y}{d t}=0$. Then solve: $\frac{d y}{d t}=-\frac{9}{4} \mathrm{ft} / \mathrm{s}$.
2. As the water rises, the radius and height of the cone of water changes but their ratio does not. The height is always $18 / 6=3$ times the radius. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. Plugging in that $r=h / 3$, we have $V=\frac{1}{27} \pi h^{3}$ and differentiating, $\frac{d V}{d t}=\frac{1}{9} \pi h^{2} \frac{d h}{d t}$. We're told that $\frac{d V}{d t}=14 \pi$ and we're asked to find $\frac{d h}{d t}$ when $h=10$. Solving, we get $\frac{d h}{d t}=\frac{63}{50}$ $\mathrm{m} / \mathrm{min}$.
3. Let x represent the height of the rocket. The relationship between the angle of elevation θ and the height of the rocket is given by $\tan \theta=x / 9$. So then differentiating, we have $\frac{d x}{d t}=9 \sec ^{2} \theta \frac{d \theta}{d t}$. After 3 seconds, the rocket is 12 miles high. So $\tan \theta=12 / 9$ and the hypotenuse of the triangle is 15 mi . So then, $\sec \theta=15 / 9$ and hence we have the equation $4=\frac{225}{9} \frac{d \theta}{d t}$. So $\frac{d \theta}{d t}=\frac{36}{225} \mathrm{rad} / \mathrm{s}$.
4. $f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)$. So the critical points are $x= \pm 2,0$. The 2 nd derivative is $f^{\prime \prime}(x)=12 x^{2}-16=4\left(3 x^{2}-4\right)$ and its zeros are $\pm \frac{2}{\sqrt{3}}$. This tells us that the critical points are not inflection points but extrema and concavity tests show that $(0,10)$ is concave down, hence a local max. The absolute min are $(\pm 2,-6)$. See picture above.
5. $\ln (x)$ is defined on $(0, \infty)$. By quotient rule, $g^{\prime}(x)=(1-\ln (x)) / x^{2}$. So its one critical point is at $x=e$. Then $\left(e, \frac{1}{e}\right)$ is its maximum. This can be checked by observing that $g^{\prime}(x)>0$ for $x<e$ and $g^{\prime}(x)<0$ for $x>e$.
$(1,0)$ is the only x-intercept since $\ln (x)<0$ for $x<1$ while $g(x)>0$ for $x>1$. $\lim _{x \rightarrow \infty} g(x)=0$ gives $y=0$ as a horizontal asympotote and $x=0$ is the vertical asymptote.
