1

Compute derivatives for the following functions:

1. $f(x)=\ln \left(x^{2}+2 x+1\right)$
2. $g(x)=x^{2} \ln \left(1+e^{x}\right)$

2

Describe the tangent line to the curve $y=e^{\arccos (x)-\pi}$, defined on the interval $[-1,1]$, at the point $\left(\sqrt{2} / 2, e^{-3 \pi / 4}\right)$. Is the function decreasing or increasing near this point?

3

If the position $p(t)$ of a particle is given implicitly as a function of time by the following equation:

$$
\ln (p(t))=\ln \left(t^{2}+1\right)-\ln (t)
$$

compute the instantaneous velocity of this particular at time $t=1$. What does this tell you about the particle at this time?

4

Suppose the position of a particle at time t is given by the equation:

$$
p(t)=\arctan \left(t^{3}\right)
$$

Find the acceleration of the particle at time $t=2$.

5

Find the equation of the tangent line to the curve $y=y(x)$ given by the equation $\cos (y)=\sqrt{2} x$ at the point $(1 / 2, \pi / 4)$. In addition, determine a point at which the tangent line to this curve is vertical.

Answer Key

1. (i) $f^{\prime}(x)=\frac{2}{x+1} \quad$ (ii) $g^{\prime}(x)=x^{2} e^{x}\left(1+e^{x}\right)^{-1}+2 x \ln \left(1+e^{x}\right)$.
2. The slope is $-\sqrt{2} e^{-3 \pi / 4}$, so the function is decreasing.
3. The instantaneous velocity is $p^{\prime}(1)=0$. In this case, the particle is finishing a period of deceleration prior to accelerating again.
4. The acceleration at time $t=2$ is given by $p^{\prime \prime}(2)=-\frac{1524}{4225}$.
5. The equation of the tangent line at the given point is $y=-2 x+(1+\pi / 4)$. The tangent line is vertical at the point $(1 / \sqrt{2}, 0)$.

Solutions

1. Using the chain rule, we compute:

$$
f^{\prime}(x)=\frac{\left(x^{2}+2 x+1\right)^{\prime}}{x^{2}+2 x+1}=\frac{2(x+1)}{(x+1)^{2}}=\frac{2}{x+1}
$$

Using both the product rule and the chain rule, we compute:

$$
g^{\prime}(x)=x^{2}\left(\ln \left(1+e^{x}\right)\right)^{\prime}+2 x \ln \left(1+e^{x}\right)=\frac{x^{2}\left(1+e^{x}\right)^{\prime}}{1+e^{x}}+2 x \ln \left(1+e^{x}\right)=\frac{x^{2} e^{x}}{1+e^{x}}+2 x \ln \left(1+e^{x}\right)
$$

2. The slope of the tangent line to the curve $y=y(x)$ at the point $\left(\sqrt{2} / 2, e^{-3 \pi / 4}\right)$ is the derivative $\frac{d y}{d x}$ evaluated at the point $\left(\sqrt{2} / 2, e^{-3 \pi / 4}\right)$. Using the chain rule, we compute:

$$
\frac{d y}{d x}=e^{\arccos (x)-\pi}(\arccos (x)-\pi)^{\prime}=\frac{-e^{\arccos (x)-\pi}}{\sqrt{1-x^{2}}}
$$

Evaluating at $\left(\sqrt{2} / 2, e^{-3 \pi / 4}\right)$, we know that $\arccos (\sqrt{2} / 2)=\pi / 4$ in this case, and a direct computation shows that:

$$
\frac{d y}{d x}(\sqrt{2} / 2)=\frac{-e^{\arccos (\sqrt{2} / 2)-\pi}}{\sqrt{1-(\sqrt{2} / 2)^{2}}}=\frac{-e^{-3 \pi / 4}}{\sqrt{1 / 2}}=-\sqrt{2} e^{-3 \pi / 4}
$$

This slope is negative, so the function is decreasing at this point.
3. Using logarithm laws, we rewrite the defining equation for $p(t)$ as:

$$
\ln (p(t))=\ln \left(\frac{t^{2}+1}{t}\right)
$$

Using implicit differentiation, we obtain:

$$
\frac{p^{\prime}(t)}{p(t)}=\frac{t}{t^{2}+1}\left(\frac{t^{2}+1}{t}\right)^{\prime}=\frac{t}{t^{2}+1} \frac{t\left(t^{2}+1\right)^{\prime}-\left(t^{2}+1\right) t^{\prime}}{t^{2}}=\frac{t}{t^{2}+1} \frac{2 t^{2}-\left(t^{2}+1\right)}{t^{2}}=\frac{t}{t^{2}+1} \frac{t^{2}-1}{t^{2}}=\frac{t^{2}-1}{t\left(t^{2}+1\right)}
$$

The instantaneous velocity is the derivative of position, so we obtain:

$$
p^{\prime}(t)=p(t) \frac{t^{2}-1}{t\left(t^{2}+1\right)} \quad \Rightarrow \quad p^{\prime}(1)=p(1) \frac{1^{2}-1}{1\left(1^{2}+1\right)}=p(1) \cdot 0=0
$$

This means that at the instant $t=1$, the particle is not moving. As can be seen from a graph, or by testing values, the particle is finishing a period of deceleration prior to time $t=1$ and accelerates again after time $t=1$.
4. First, we compute the velocity, using the chain rule

$$
p^{\prime}(t)=\frac{1}{1+\left(t^{3}\right)^{2}}\left(t^{3}\right)^{\prime}=\frac{3 t^{2}}{1+t^{6}}
$$

Now, using the quotient rule, we compute the acceleration:

$$
p^{\prime \prime}(t)=\frac{\left(1+t^{6}\right)\left(3 t^{2}\right)^{\prime}-\left(3 t^{2}\right)\left(1+t^{6}\right)^{\prime}}{\left(1+t^{6}\right)^{2}}=\frac{6 t\left(1+t^{6}\right)-\left(3 t^{2}\right)\left(6 t^{5}\right)}{\left(1+t^{6}\right)^{2}}=\frac{6 t+6 t^{7}-18 t^{7}}{\left(1+t^{6}\right)^{2}}=\frac{6 t-12 t^{7}}{\left(1+t^{6}\right)^{2}}
$$

Hence, the acceleration at time $t=2$ is:

$$
p^{\prime \prime}(2)=\frac{6(2)-12(2)^{7}}{\left(1+(2)^{6}\right)^{2}}=-\frac{1524}{4225}
$$

5. Differentiating implicitly gives:

$$
-\sin (y) \frac{d y}{d x}=\sqrt{2} \Rightarrow \frac{d y}{d x}=-\sqrt{2} \csc (y)
$$

Hence, at the point $(1 / 2, \pi / 4)$, we have:

$$
\frac{d y}{d x}=-\sqrt{2} \csc (\pi / 4)=-\sqrt{2} \frac{2}{\sqrt{2}}=-2
$$

Hence, the equation of the tangent line at the given point is:

$$
y-\pi / 4=-2(x-1 / 2) \Rightarrow y=-2 x+(1+\pi / 4)
$$

In order for the tangent line to be vertical at a given point, the limit of the derivative as x approaches that point needs to be $\pm \infty$. In particular, we see that this occurs when $\sin (y)=0$, so for instance when $y=0$. Hence, $1=\cos (0)=\sqrt{2} x$, and thus $x=1 / \sqrt{2}$. Thus, the tangent line is vertical at the point $(1 / \sqrt{2}, 0)$.

