1

Compute the derivatives of the following functions:

1. $f(x)=e^{x}\left(e^{x}+x^{2}+1\right)$
2. $g(x)=e^{x} \cos (x)$

2

Suppose that the population $P(t)$ of trees in a forest, as a function of time (in years), is given by the equation:

$$
P(t)=\frac{e^{t}}{t^{2}}
$$

for all $t>0$. Determine the time at which there is the lowest number of trees in the forest.

3

Determine all maxima of the function $f(t)=\cos (t) \sin (t)$.

4

Consider the functions:

$$
f(x)=\frac{-a}{x} \quad \text { and } \quad g(x)=\frac{x^{3}}{3 b}
$$

Determine nonzero values of a and b for which the equation $f^{\prime}(x)=g^{\prime}(x)$ has no solutions.

5

If $h(x)=e^{-x} \cos (x)$, compute $h^{\prime}(2 \pi)$.

Answer Key

1. (i) $f^{\prime}(x)=e^{x}\left(2 e^{x}+x^{2}+2 x\right)+1 \quad$ (ii) $g^{\prime}(x)=e^{x}(\cos (x)-\sin (x))$.
2. $t=2$.
3. $t=\pi k / 4$ for $k= \pm 1, \pm 5, \pm 9, \cdots$.
4. Any values of a and b such that $a b<0$, for instance $a=1, b=-1$.
5. $h^{\prime}(2 \pi)=-e^{-2 \pi}$.

Solutions

1. Using the product rule, we see that:

$$
f(x)=e^{x}\left(e^{x}+x^{2}+1\right)^{\prime}+\left(e^{x}\right)^{\prime}\left(e^{x}+x^{2}+1\right)=e^{x}\left(e^{x}+2 x\right)+e^{x}\left(e^{x}+x^{2}+1\right)=e^{x}\left(2 e^{x}+x^{2}+2 x\right)+1
$$

Again, using the product rule, we see that:

$$
g^{\prime}(x)=e^{x}(\cos (x))^{\prime}+\left(e^{x}\right)^{\prime} \cos (x)=-e^{x} \sin (x)+\cos (x) e^{x}=e^{x}(\cos (x)-\sin (x))
$$

2. We first need to compute $P^{\prime}(t)$ and then determine when $P^{\prime}(t)=0$. Using the quotient rule, we see that:

$$
P^{\prime}(t)=\frac{t^{2}\left(e^{t}\right)^{\prime}-e^{t}\left(t^{2}\right)^{\prime}}{\left(t^{2}\right)^{2}}=\frac{t^{2} e^{t}-2 t e^{t}}{t^{4}}=\frac{e^{t}(t-2)}{t^{3}}
$$

Hence, $P^{\prime}(t)=0$ precisely when $t=2$. This is a minimum, as can be checked from a graph of $P(t)$ or by a table of values (note that $P(1)=e \approx 2.7, P(2)=e^{2} / 4 \approx 1.8, P(3)=e^{3} / 8 \approx 2.5$). Hence, year 2 was the time at which the population of trees in the forest was at a minimum.
3. First, we use the product rule to compute the derivative:

$$
f^{\prime}(t)=\cos (t)(\sin (t))^{\prime}+(\cos (t))^{\prime} \sin (t)=\cos ^{2}(t)-\sin ^{2}(t)
$$

Now, $f^{\prime}(t)=0$ precisely when $\cos ^{2}(t)=\sin ^{2}(t)$ and hence precisely when $\cos (t)= \pm \sin (t)$. This occurs when $t=\pi k / 4$, for any positive or negative odd integer k. By checking a graph, or by using a table of values, we see that the maxima correspond to the points when $k= \pm 1, \pm 5, \pm 9, \cdots$. In other words, when $k \equiv 1 \bmod 4$. The mimima are when $k \equiv 3 \bmod 4$.
4. We first use the quotient rule to compute:

$$
f^{\prime}(x)=\frac{x(-a)^{\prime}-(-a)(x)^{\prime}}{x^{2}}=\frac{a}{x^{2}}
$$

Then, we use the power rule to compute:

$$
g^{\prime}(x)=\frac{3 x^{3-2}}{3 b}=\frac{x^{2}}{b}
$$

Now, if $f^{\prime}(x)=g^{\prime}(x)$, then:

$$
\frac{a}{x^{2}}=\frac{x^{2}}{b} \Rightarrow x^{4}=a b
$$

There are no real number solutions x to the equation $x^{4}=a b$ is $a b<0$. Hence, we may take any values of a and b such that $a b<0$, for instance $a=1, b=-1$.
5. First, we use the quotient to compute:

$$
\left(e^{-x}\right)^{\prime}=\left(\frac{1}{e^{x}}\right)^{\prime}=\frac{e^{x}(1)^{\prime}-1\left(e^{x}\right)^{\prime}}{e^{2 x}}=\frac{-e^{x}}{e^{2 x}}=\frac{-1}{e^{x}}=-e^{-x}
$$

Now, we use the product rule and quotient rule to compute:

$$
h^{\prime}(x)=e^{-x}(\cos (x))^{\prime}+\left(e^{-x}\right)^{\prime} \cos (x)=-e^{-x} \sin (x)-\cos (x) e^{-x}=-e^{-x}(\sin (x)+\cos (x))
$$

Hence:

$$
h^{\prime}(2 \pi)=-e^{-2 \pi}(\sin (2 \pi)+\cos (2 \pi))=-e^{-2 \pi}(1+0)=-e^{-2 \pi}
$$

