1

Compute the derivatives of the following functions:

1. $f(x)=x^{4}+4 x^{2}+1$
2. $g(x)=\left(x^{3}+2 x+2\right)^{2}$

2

Let $f(x)=x^{2}+1$ and $g(x)=-x^{3}$. Consider the function:

$$
h(x)=\left\{\begin{array}{cl}
f^{\prime}(x) & x \geq 1 \\
a g^{\prime}(x) & x<1
\end{array}\right.
$$

where f^{\prime} and g^{\prime} are the derivatives of f and g, respectively. Determine the value of a for which $h(x)$ is continuous.

3

Consider the function:

$$
p(x)=\left\{\begin{array}{cc}
|x-3| & x \geq-1 \\
-x^{2} & x<-1
\end{array}\right.
$$

If any of the following limits do not exist, explain why. Otherwise, compute the limit:

1. $\lim _{x \rightarrow-\infty} p(x)$
2. $\lim _{x \rightarrow-1^{+}} p(x)$
3. $\lim _{x \rightarrow-1} p(x)$

4

Draw the graph of a function $f(x)$ that is discontinuous only at the points $x=-1$ and $x=1$, and satisfies $\lim _{x \rightarrow-\infty} f(x)=\infty$.

5

Define a function piecewise (i.e., like in problems 2 and 3 above) that satisfies the conditions of the function $f(x)$ in problem 4. Prove that your example works.

Answer Key

1. (i) $f^{\prime}(x)=4 x^{3}+8 x$ (ii) $g^{\prime}(x)=6 x^{5}+16 x^{3}+12 x^{2}+8 x+8$.
2. $a=-2 / 3$.
3. (i) $-\infty$ (ii) 4 (iii) Does not exist
4. Problems 4 and 5 can be answered simultaneously by considering a function defined piecewise as $-x$ on $(-\infty,-1)$, as 2 on $[-1,1]$, and as $3 x$ on $(1, \infty)$. Many other possible functions would also suffice.

Solutions

1. Using the power rule, we see that:

$$
f^{\prime}(x)=4 x^{4-1}+(4 \times 2) x^{2-1}+0=4 x^{3}+8 x
$$

For the derivative of $g(x)$, we first expand the square so that we can apply the power rule:

$$
g(x)=\left(x^{3}+2 x+2\right)\left(x^{3}+2 x+2\right)=x^{6}+4 x^{4}+4 x^{3}+4 x^{2}+8 x+4
$$

Now, using the power rule, we see that:

$$
g^{\prime}(x)=6 x^{6-1}+(4 \times 4) x^{4-1}+(4 \times 3) x^{3-1}+(4 \times 2) x^{2-1}+8=6 x^{5}+16 x^{3}+12 x^{2}+8 x+8
$$

2. Using the power rule, we compute $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=-3 x^{2}$. Since f^{\prime} and g^{\prime} are continuous, we see that in order for $h(x)$ to be continuous, it remains to require that $f^{\prime}(1)=a g^{\prime}(1)$. Indeed, this guarantees that $f^{\prime}(1)=\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{-}} h(x)=a g^{\prime}(1)$, so that h is continuous at $x=1$. Now, $f^{\prime}(1)=2$ and $a g^{\prime}(1)=-3 a$, so $-3 a=2$ forces $a=-2 / 3$.
3. We have:

$$
\lim _{x \rightarrow-\infty} p(x)=\lim _{x \rightarrow-\infty}\left(-x^{2}\right)=-\infty
$$

since $-x^{2}$ is concave down and goes down to $-\infty$ at both ends. Similarly, we compute:

$$
\lim _{x \rightarrow-1^{+}} p(x)=\lim _{x \rightarrow-1^{+}}|x-3|=|-1-3|=|-4|=4
$$

Since $|x-3|=p(x)$ for all $x \geq-1$ ("from the right hand side of -1 "). Lastly, the limit $\lim _{x \rightarrow-1} p(x)$ does not exist, since $\lim _{x \rightarrow-1^{-}} p(x) \neq \lim _{x \rightarrow-1^{+}} p(x)$. Indeed:

$$
\lim _{x \rightarrow-1^{-}} p(x)=\lim _{x \rightarrow-1^{-}}\left(-x^{2}\right)=-1 \neq 4
$$

4, 5. For problems 4 and 5, many possible functions would do the trick. We consider the following function, defined piecewise as:

$$
f(x)=\left\{\begin{array}{cc}
-x & x<-1 \\
2 & -1 \leq x \leq 1 \\
3 x & x \geq 1
\end{array}\right.
$$

This function is discontinuous at the points $x=-1$ and $x=1$, since:

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}(-x)=1 \neq 2=\lim _{x \rightarrow-1^{+}} 2=\lim _{x \rightarrow-1^{+}} f(x)
$$

and

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 \neq 3=\lim _{x \rightarrow 1^{+}} 3 x=\lim _{x \rightarrow 1^{+}} f(x)
$$

Finally, we verify that $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}(-x)=\infty$, as required.

