1

Compute the following limit:

$$
\lim _{x \rightarrow 5}\left(x^{2}+5\right)\left(x^{2}-5\right)
$$

2

Find the limit as $t \rightarrow 0^{-}$of the following function:

$$
f(t)=\left\{\begin{array}{cc}
t+2 & t>0 \\
-3 & t \leq 0
\end{array}\right.
$$

Is this function continuous? If so, why? If not, where is it discontinuous and why?

3

Compute the limit:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}
$$

4
Calculate the following limits:

1. $\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+3}{2 x^{2}+x-2}$
2. $\lim _{x \rightarrow-\infty} \frac{x^{4}+1}{x^{8}+1}$
3. $\lim _{x \rightarrow-\infty} e^{-x^{2}}$

5

Find the value of a that makes the following function continuous on all of $(-\infty, \infty)$:

$$
h(x)= \begin{cases}x^{2}+5 & x>-2 \\ a x-1 & x \leq-2\end{cases}
$$

Answer Key

1. The limit is 600 .
2. The limit is -3 and the function is discontinuous at the point $\mathrm{t}=-3$.
3. The limit is 0 .
4. (i) 3 , (ii) 0 , (iii) 0 .
5. The required value is $a=-5$.

Solutions

1. Using the product rule, we see that:

$$
\lim _{x \rightarrow 5}\left(x^{2}+5\right)\left(x^{2}-5\right)=\lim _{x \rightarrow 5}\left(x^{2}+5\right) \lim _{x \rightarrow 5}\left(x^{2}-5\right)=\left(5^{2}+5\right)\left(5^{2}-5\right)=30 \times 20=600
$$

The product rule is justified because both $\operatorname{limits} \lim _{x \rightarrow 5}\left(x^{2}+5\right)$ and $\lim _{x \rightarrow 5}\left(x^{2}-5\right)$ exist.
2. We see that $\lim _{t \rightarrow 0^{-}} f(t)=\lim _{t \rightarrow 0^{-}}(-3)=-3$, since $f(t)$ is constant for all $t \leq 0$. On the other hand, $\lim _{t \rightarrow 0^{+}} f(t)=\lim _{t \rightarrow 0^{+}}(t+2)=0+2=2$. Since these two limits fail to agree $(-3 \neq 2)$, we observe that $f(t)$ is discontinuous at $t=-3$.
3. Factoring $x^{2}+2 x+1=(x+1)^{2}$ allows us to make a cancellation with the denominator and therefore:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)^{2}}{x+1}=\lim _{x \rightarrow-1}(x+1)=-1+1=0
$$

Notice that the limit could not have been evaluated by direct application of the quotient rule as this would have yielded the indeterminate form $0 / 0$.
4. The first two limits are evaluated using the rules for rational functions. Since the leading terms $6 x^{2}$ and $2 x^{2}$ in the numerator and denominator, respectively, have the same order, we have:

$$
\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+3}{2 x^{2}+x-2}=\lim _{x \rightarrow \infty} \frac{6 x^{2}}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{6}{2}=\frac{6}{2}=3
$$

Since the leading term x^{8} in the denominator has a higher order than the leading term x^{4} in the numerator, we see that:

$$
\lim _{x \rightarrow-\infty} \frac{x^{4}+1}{x^{8}+1}=\lim _{x \rightarrow-\infty} \frac{x^{4}}{x^{8}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{4}}=0
$$

There are several ways to do the final part of this problem. One is to observe that for $x<0$, as x tends towards $-\infty$, the function $e^{-x^{2}}$ is monotonically decreasing and bounded below by 0 , so its limit must be 0 . Another is to use the limit laws for exponential functions, observing that $\lim _{x \rightarrow-\infty}\left(-x^{2}\right)=-\infty$.
5. To make the function $h(x)$ continuous, we must have that $\lim _{x \rightarrow-2^{+}} h(x)=\lim _{x \rightarrow-2^{-}} h(x)$. Now:

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} h(x)=\lim _{x \rightarrow-2^{+}}\left(x^{2}+5\right)=(-2)^{2}+5=4+5=9 \\
& \lim _{x \rightarrow-2^{-}} h(x)=\lim _{x \rightarrow-2^{-}}(a x-1)=a(-2)-1=-2 a-1
\end{aligned}
$$

Hence, we must solve the linear equation:

$$
-2 a-1=9 \Rightarrow-2 a=10 \Rightarrow a=-5
$$

