1 Problems

Exercise 1. Let $f(x)=5 \log _{2}(x+3)$. What is $f^{-1}(x)$?
Exercise 2. Solve $e^{2 x}-e^{x}-42$.
Exercise 3. What are the horizontal and vertical asymptotes of $\frac{x^{2}+1}{x-3}$?
Exercise 4. Solve $2^{x+2}=4^{x+3}$ for x.
Exercise 5. Compute $\cos \left(\tan ^{-1}(4 / 3)\right)$.

2 Answer key

Exercise 1. $f^{-1}(x)=2^{\frac{x}{5}}-3$.
Exercise 2. $x=\ln 7$
Exercise 3. Horizontal asymptote: none, vertical asymptote: 3.
Exercise 4. $x=-4$
Exercise 5. $\frac{3}{5}$

3 Solutions

Exercise 1. Proceed as in finding any inverse function.
Exercise 2. Let $u=e^{x}$ then the equation is $u^{2}-u-42$ which factors into $(u+6)(u-7)=0$. So $x=\ln 7$ since there are no solutions to $e^{x}=-6$.

Exercise 3. The highest degree term is x^{2} in the numerator which is greater than x in the denominator so there is no horizontal asymptote. Vertical asymptote is $x=3$ since the denominator is 0 when $x=3$.

Exercise 4. The right hand side can be rewritten as $2^{2(x+3)}$ so we have to solve $x+2=2 x+6$. Then $x=-4$.

Exercise 5. By Pythagoras the missing side is 5 so cosine of the angle is $\frac{3}{5}$.

