1 Problems

Exercise 1. Solve sin(2x) - sin(x) = 0 for $0 \le x < 2\pi$. List all the solutions.

Exercise 2. Solve $\cos^2 x - 3\cos x + 2 = 0$ for $0 \le x < 2\pi$.

Exercise 3. Solve $\cos^2 x - 2\cos x + 1 = 0$ for $0 \le x < 2\pi$.

Exercise 4. Solve $4^x - 4^* 2^x + 4 = 0$.

Exercise 5. Solve $e^2x - 5e^x + 6 = 0$.

2 Answer key

Exercise 1. $x = 0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}$

Exercise 2. x = 0

Exercise 3. $x = 0, \pi$

Exercise 4. x = 1

Exercise 5. x = ln2, ln3

3 Solutions

Exercise 1. Using double angle formula rewrite sin(2x) = 2sinxcosx. Then the equation is 2sinxcosx - sinx = 0 which can be written as sinx(2cosx - 1) = 0. The term sinx is 0 when $x = 0, \pi$. The term $cosx = \frac{1}{2}$ when $x = \frac{\pi}{3}, \frac{5\pi}{3}$.

Exercise 2. Let u = cosx. Then the equation is $u^2 - 3u + 2 = 0$ which is quadratic. The solutions are u = 2 and u = 1. Substituting back, there is no x such that cosx = 2. There is a unique solution x = 0 for cosx = 1.

Exercise 3. Let u = cosx. Then the equation is $u^2 - 2u + 1 = 0$ which is quadratic and factors into (u-1)(u+1) = 0. Then $u = \pm 1$. Substituting back, we want to solve $cosx = \pm 1$. So x = 0 and $x = \pi$ are the two solutions.

Exercise 4. $4^x - 4^*2^x + 4 = 0$ can be rewritten as $2^{2x} - 4^*2^x + 4 = 0$. Let $u = 2^x$. Then the equation is $u^2 - 4u + 4 = 0$. This can be factored as $(u - 2)^2 = 0$ so u = 2. Substituting back we get $2^x = 2$ so x = 1.

Exercise 5. Let $u = e^x$ then the equation is $u^2 - 5u + 6$ which factors as (u - 2)(u - 3) = 0. So we need to solve $e^x = 2$ and $e^x = 3$. This gives x = ln2 and x = ln3.