1 Problems

Exercise 1. Solve $\sin (2 x)-\sin (x)=0$ for $0 \leq x<2 \pi$. List all the solutions.
Exercise 2. Solve $\cos ^{2} x-3 \cos x+2=0$ for $0 \leq x<2 \pi$.
Exercise 3. Solve $\cos ^{2} x-2 \cos x+1=0$ for $0 \leq x<2 \pi$.
Exercise 4. Solve $4^{x}-4^{*} 2^{x}+4=0$.
Exercise 5. Solve $e^{2} x-5 e^{x}+6=0$.

2 Answer key

Exercise 1. $x=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}$
Exercise 2. $x=0$

Exercise 3. $x=0, \pi$
Exercise 4. $x=1$

Exercise 5. $x=\ln 2, \ln 3$

3 Solutions

Exercise 1. Using double angle formula rewrite $\sin (2 x)=2 \sin x \cos x$. Then the equation is $2 \sin x \cos x-\sin x=0$ which can be written as $\sin x(2 \cos x-1)=0$. The term $\sin x$ is 0 when $x=0, \pi$. The term $\cos x=\frac{1}{2}$ when $x=\frac{\pi}{3}, \frac{5 \pi}{3}$.

Exercise 2. Let $u=\cos x$. Then the equation is $u^{2}-3 u+2=0$ which is quadratic. The solutions are $u=2$ and $u=1$. Substituting back, there is no x such that $\cos x=2$. There is a unique solution $x=0$ for $\cos x=1$.

Exercise 3. Let $u=\cos x$. Then the equation is $u^{2}-2 u+1=0$ which is quadratic and factors into $(u-1)(u+1)=0$. Then $u= \pm 1$. Substituing back, we want to solve $\cos x= \pm 1$. So $x=0$ and $x=\pi$ are the two solutions.

Exercise 4. $4^{x}-4^{*} 2^{x}+4=0$ can be rewritten as $2^{2 x}-4^{*} 2^{x}+4=0$. Let $u=2^{x}$. Then the equation is $u^{2}-4 u+4=0$. This can be factored as $(u-2)^{2}=0$ so $u=2$. Substituting back we get $2^{x}=2$ so $x=1$.

Exercise 5. Let $u=e^{x}$ then the equation is $u^{2}-5 u+6$ which factors as $(u-2)(u-3)=0$. So we need to solve $e^{x}=2$ and $e^{x}=3$. This gives $x=\ln 2$ and $x=\ln 3$.

